gtsam/examples/LocalizationExample.cpp

102 lines
3.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file LocalizationExample.cpp
* @brief Simple robot localization example, with three "GPS-like" measurements
* @author Frank Dellaert
*/
// pull in the 2D PoseSLAM domain with all typedefs and helper functions defined
#include <gtsam/slam/pose2SLAM.h>
// include this for marginals
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <iomanip>
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace gtsam::noiseModel;
/**
* UnaryFactor
* Example on how to create a GPS-like factor on position alone.
*/
class UnaryFactor: public NoiseModelFactor1<Pose2> {
double mx_, my_; ///< X and Y measurements
public:
UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model):
NoiseModelFactor1<Pose2>(model, j), mx_(x), my_(y) {}
virtual ~UnaryFactor() {}
Vector evaluateError(const Pose2& q,
boost::optional<Matrix&> H = boost::none) const
{
if (H) (*H) = Matrix_(2,3, 1.0,0.0,0.0, 0.0,1.0,0.0);
return Vector_(2, q.x() - mx_, q.y() - my_);
}
};
/**
* Example of a more complex 2D localization example
* - Robot poses are facing along the X axis (horizontal, to the right in 2D)
* - The robot moves 2 meters each step
* - We have full odometry between poses
* - We have unary measurement factors at eacht time step
*/
int main(int argc, char** argv) {
// create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
pose2SLAM::Graph graph;
// add two odometry factors
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
graph.addOdometry(1, 2, odometry, odometryNoise);
graph.addOdometry(2, 3, odometry, odometryNoise);
// add unary measurement factors, like GPS, on all three poses
SharedDiagonal noiseModel = Diagonal::Sigmas(Vector_(2, 0.1, 0.1)); // 10cm std on x,y
graph.push_back(boost::make_shared<UnaryFactor>(1, 0, 0, noiseModel));
graph.push_back(boost::make_shared<UnaryFactor>(2, 2, 0, noiseModel));
graph.push_back(boost::make_shared<UnaryFactor>(3, 4, 0, noiseModel));
// print
graph.print("\nFactor graph:\n");
// create (deliberatly inaccurate) initial estimate
pose2SLAM::Values initialEstimate;
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print("\nInitial estimate:\n ");
// use an explicit Optimizer object
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
pose2SLAM::Values result = optimizer.optimize();
result.print("\nFinal result:\n ");
// Query the marginals
Marginals marginals(graph, result);
cout.precision(2);
cout << "\nP1:\n" << marginals.marginalCovariance(1) << endl;
cout << "\nP2:\n" << marginals.marginalCovariance(2) << endl;
cout << "\nP3:\n" << marginals.marginalCovariance(3) << endl;
return 0;
}