/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file LocalizationExample.cpp * @brief Simple robot localization example, with three "GPS-like" measurements * @author Frank Dellaert */ // pull in the 2D PoseSLAM domain with all typedefs and helper functions defined #include // include this for marginals #include #include #include #include using namespace std; using namespace gtsam; using namespace gtsam::noiseModel; /** * UnaryFactor * Example on how to create a GPS-like factor on position alone. */ class UnaryFactor: public NoiseModelFactor1 { double mx_, my_; ///< X and Y measurements public: UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model): NoiseModelFactor1(model, j), mx_(x), my_(y) {} virtual ~UnaryFactor() {} Vector evaluateError(const Pose2& q, boost::optional H = boost::none) const { if (H) (*H) = Matrix_(2,3, 1.0,0.0,0.0, 0.0,1.0,0.0); return Vector_(2, q.x() - mx_, q.y() - my_); } }; /** * Example of a more complex 2D localization example * - Robot poses are facing along the X axis (horizontal, to the right in 2D) * - The robot moves 2 meters each step * - We have full odometry between poses * - We have unary measurement factors at eacht time step */ int main(int argc, char** argv) { // create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) pose2SLAM::Graph graph; // add two odometry factors Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta graph.addOdometry(1, 2, odometry, odometryNoise); graph.addOdometry(2, 3, odometry, odometryNoise); // add unary measurement factors, like GPS, on all three poses SharedDiagonal noiseModel = Diagonal::Sigmas(Vector_(2, 0.1, 0.1)); // 10cm std on x,y graph.push_back(boost::make_shared(1, 0, 0, noiseModel)); graph.push_back(boost::make_shared(2, 2, 0, noiseModel)); graph.push_back(boost::make_shared(3, 4, 0, noiseModel)); // print graph.print("\nFactor graph:\n"); // create (deliberatly inaccurate) initial estimate pose2SLAM::Values initialEstimate; initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1)); initialEstimate.print("\nInitial estimate:\n "); // use an explicit Optimizer object LevenbergMarquardtOptimizer optimizer(graph, initialEstimate); pose2SLAM::Values result = optimizer.optimize(); result.print("\nFinal result:\n "); // Query the marginals Marginals marginals(graph, result); cout.precision(2); cout << "\nP1:\n" << marginals.marginalCovariance(1) << endl; cout << "\nP2:\n" << marginals.marginalCovariance(2) << endl; cout << "\nP3:\n" << marginals.marginalCovariance(3) << endl; return 0; }