gtsam/python/gtsam/utils/visual_isam.py

132 lines
4.7 KiB
Python

import gtsam
from gtsam import symbol
class Options:
""" Options for visual isam example. """
def __init__(self):
self.hardConstraint = False
self.pointPriors = False
self.batchInitialization = True
self.reorderInterval = 10
self.alwaysRelinearize = False
def initialize(data, truth, options):
# Initialize iSAM
params = gtsam.ISAM2Params()
if options.alwaysRelinearize:
params.relinearizeSkip = 1
isam = gtsam.ISAM2(params=params)
# Add constraints/priors
# TODO: should not be from ground truth!
newFactors = gtsam.NonlinearFactorGraph()
initialEstimates = gtsam.Values()
for i in range(2):
ii = symbol('x', i)
if i == 0:
if options.hardConstraint: # add hard constraint
newFactors.add(
gtsam.NonlinearEqualityPose3(ii, truth.cameras[0].pose()))
else:
newFactors.add(
gtsam.PriorFactorPose3(ii, truth.cameras[i].pose(),
data.noiseModels.posePrior))
initialEstimates.insert(ii, truth.cameras[i].pose())
nextPoseIndex = 2
# Add visual measurement factors from two first poses and initialize
# observed landmarks
for i in range(2):
ii = symbol('x', i)
for k in range(len(data.Z[i])):
j = data.J[i][k]
jj = symbol('l', j)
newFactors.add(
gtsam.GenericProjectionFactorCal3_S2(data.Z[i][
k], data.noiseModels.measurement, ii, jj, data.K))
# TODO: initial estimates should not be from ground truth!
if not initialEstimates.exists(jj):
initialEstimates.insert(jj, truth.points[j])
if options.pointPriors: # add point priors
newFactors.add(
gtsam.PriorFactorPoint3(jj, truth.points[j],
data.noiseModels.pointPrior))
# Add odometry between frames 0 and 1
newFactors.add(
gtsam.BetweenFactorPose3(
symbol('x', 0),
symbol('x', 1), data.odometry[1], data.noiseModels.odometry))
# Update ISAM
if options.batchInitialization: # Do a full optimize for first two poses
batchOptimizer = gtsam.LevenbergMarquardtOptimizer(newFactors,
initialEstimates)
fullyOptimized = batchOptimizer.optimize()
isam.update(newFactors, fullyOptimized)
else:
isam.update(newFactors, initialEstimates)
# figure(1)tic
# t=toc plot(frame_i,t,'r.') tic
result = isam.calculateEstimate()
# t=toc plot(frame_i,t,'g.')
return isam, result, nextPoseIndex
def step(data, isam, result, truth, currPoseIndex, isamArgs=()):
'''
Do one step isam update
@param[in] data: measurement data (odometry and visual measurements and their noiseModels)
@param[in/out] isam: current isam object, will be updated
@param[in/out] result: current result object, will be updated
@param[in] truth: ground truth data, used to initialize new variables
@param[currPoseIndex]: index of the current pose
'''
# iSAM expects us to give it a new set of factors
# along with initial estimates for any new variables introduced.
newFactors = gtsam.NonlinearFactorGraph()
initialEstimates = gtsam.Values()
# Add odometry
prevPoseIndex = currPoseIndex - 1
odometry = data.odometry[prevPoseIndex]
newFactors.add(
gtsam.BetweenFactorPose3(
symbol('x', prevPoseIndex),
symbol('x', currPoseIndex), odometry,
data.noiseModels.odometry))
# Add visual measurement factors and initializations as necessary
for k in range(len(data.Z[currPoseIndex])):
zij = data.Z[currPoseIndex][k]
j = data.J[currPoseIndex][k]
jj = symbol('l', j)
newFactors.add(
gtsam.GenericProjectionFactorCal3_S2(
zij, data.noiseModels.measurement,
symbol('x', currPoseIndex), jj, data.K))
# TODO: initialize with something other than truth
if not result.exists(jj) and not initialEstimates.exists(jj):
lmInit = truth.points[j]
initialEstimates.insert(jj, lmInit)
# Initial estimates for the new pose.
prevPose = result.atPose3(symbol('x', prevPoseIndex))
initialEstimates.insert(
symbol('x', currPoseIndex), prevPose.compose(odometry))
# Update ISAM
# figure(1)tic
isam.update(newFactors, initialEstimates, *isamArgs)
# t=toc plot(frame_i,t,'r.') tic
newResult = isam.calculateEstimate()
# t=toc plot(frame_i,t,'g.')
return isam, newResult