import gtsam from gtsam import symbol class Options: """ Options for visual isam example. """ def __init__(self): self.hardConstraint = False self.pointPriors = False self.batchInitialization = True self.reorderInterval = 10 self.alwaysRelinearize = False def initialize(data, truth, options): # Initialize iSAM params = gtsam.ISAM2Params() if options.alwaysRelinearize: params.relinearizeSkip = 1 isam = gtsam.ISAM2(params=params) # Add constraints/priors # TODO: should not be from ground truth! newFactors = gtsam.NonlinearFactorGraph() initialEstimates = gtsam.Values() for i in range(2): ii = symbol('x', i) if i == 0: if options.hardConstraint: # add hard constraint newFactors.add( gtsam.NonlinearEqualityPose3(ii, truth.cameras[0].pose())) else: newFactors.add( gtsam.PriorFactorPose3(ii, truth.cameras[i].pose(), data.noiseModels.posePrior)) initialEstimates.insert(ii, truth.cameras[i].pose()) nextPoseIndex = 2 # Add visual measurement factors from two first poses and initialize # observed landmarks for i in range(2): ii = symbol('x', i) for k in range(len(data.Z[i])): j = data.J[i][k] jj = symbol('l', j) newFactors.add( gtsam.GenericProjectionFactorCal3_S2(data.Z[i][ k], data.noiseModels.measurement, ii, jj, data.K)) # TODO: initial estimates should not be from ground truth! if not initialEstimates.exists(jj): initialEstimates.insert(jj, truth.points[j]) if options.pointPriors: # add point priors newFactors.add( gtsam.PriorFactorPoint3(jj, truth.points[j], data.noiseModels.pointPrior)) # Add odometry between frames 0 and 1 newFactors.add( gtsam.BetweenFactorPose3( symbol('x', 0), symbol('x', 1), data.odometry[1], data.noiseModels.odometry)) # Update ISAM if options.batchInitialization: # Do a full optimize for first two poses batchOptimizer = gtsam.LevenbergMarquardtOptimizer(newFactors, initialEstimates) fullyOptimized = batchOptimizer.optimize() isam.update(newFactors, fullyOptimized) else: isam.update(newFactors, initialEstimates) # figure(1)tic # t=toc plot(frame_i,t,'r.') tic result = isam.calculateEstimate() # t=toc plot(frame_i,t,'g.') return isam, result, nextPoseIndex def step(data, isam, result, truth, currPoseIndex, isamArgs=()): ''' Do one step isam update @param[in] data: measurement data (odometry and visual measurements and their noiseModels) @param[in/out] isam: current isam object, will be updated @param[in/out] result: current result object, will be updated @param[in] truth: ground truth data, used to initialize new variables @param[currPoseIndex]: index of the current pose ''' # iSAM expects us to give it a new set of factors # along with initial estimates for any new variables introduced. newFactors = gtsam.NonlinearFactorGraph() initialEstimates = gtsam.Values() # Add odometry prevPoseIndex = currPoseIndex - 1 odometry = data.odometry[prevPoseIndex] newFactors.add( gtsam.BetweenFactorPose3( symbol('x', prevPoseIndex), symbol('x', currPoseIndex), odometry, data.noiseModels.odometry)) # Add visual measurement factors and initializations as necessary for k in range(len(data.Z[currPoseIndex])): zij = data.Z[currPoseIndex][k] j = data.J[currPoseIndex][k] jj = symbol('l', j) newFactors.add( gtsam.GenericProjectionFactorCal3_S2( zij, data.noiseModels.measurement, symbol('x', currPoseIndex), jj, data.K)) # TODO: initialize with something other than truth if not result.exists(jj) and not initialEstimates.exists(jj): lmInit = truth.points[j] initialEstimates.insert(jj, lmInit) # Initial estimates for the new pose. prevPose = result.atPose3(symbol('x', prevPoseIndex)) initialEstimates.insert( symbol('x', currPoseIndex), prevPose.compose(odometry)) # Update ISAM # figure(1)tic isam.update(newFactors, initialEstimates, *isamArgs) # t=toc plot(frame_i,t,'r.') tic newResult = isam.calculateEstimate() # t=toc plot(frame_i,t,'g.') return isam, newResult