gtsam/gtsam_unstable/linear/QPSolver.h

104 lines
3.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file QPSolver.h
* @brief A quadratic programming solver implements the active set method
* @date Apr 15, 2014
* @author Ivan Dario Jimenez
* @author Duy-Nguyen Ta
*/
#pragma once
#include <gtsam_unstable/linear/QP.h>
#include <gtsam_unstable/linear/ActiveSetSolver.h>
#include <gtsam_unstable/linear/QPState.h>
#include <gtsam/linear/VectorValues.h>
#include <vector>
#include <set>
namespace gtsam {
/**
* This QPSolver uses the active set method to solve a quadratic programming problem
* defined in the QP struct.
* Note: This version of QPSolver only works with a feasible initial value.
*/
//TODO: Remove Vector Values
class QPSolver: public ActiveSetSolver {
const QP& qp_; //!< factor graphs of the QP problem, can't be modified!
public:
/// Constructor
QPSolver(const QP& qp);
/// Find solution with the current working set
VectorValues solveWithCurrentWorkingSet(
const InequalityFactorGraph& workingSet) const;
/// Create a dual factor
JacobianFactor::shared_ptr createDualFactor(Key key,
const InequalityFactorGraph& workingSet, const VectorValues& delta) const;
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
* If some inactive inequality constraints complain about the full step (alpha = 1),
* we have to adjust alpha to stay within the inequality constraints' feasible regions.
*
* For each inactive inequality j:
* - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
* - We want: aj'*(xk + alpha*p) - bj <= 0
* - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
* it's good!
* - We only care when aj'*p > 0. In this case, we need to choose alpha so that
* aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p)
* We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
*
* We want the minimum of all those alphas among all inactive inequality.
*/
boost::tuple<double, int> computeStepSize(
const InequalityFactorGraph& workingSet, const VectorValues& xk,
const VectorValues& p) const;
/// Iterate 1 step, return a new state with a new workingSet and values
QPState iterate(const QPState& state) const;
/// Identify active constraints based on initial values.
InequalityFactorGraph identifyActiveConstraints(
const InequalityFactorGraph& inequalities,
const VectorValues& initialValues, const VectorValues& duals =
VectorValues(), bool useWarmStart = true) const;
/**
* Optimize with provided initial values
* For this version, it is the responsibility of the caller to provide
* a feasible initial value, otherwise, an exception will be thrown.
* @return a pair of <primal, dual> solutions
*/
std::pair<VectorValues, VectorValues> optimize(
const VectorValues& initialValues, const VectorValues& duals =
VectorValues(), bool useWarmStart = true) const;
/**
* For this version the caller will not have to provide an initial value
* Uses the matlab strategy for initialization
* See http://www.mathworks.com/help/optim/ug/quadratic-programming-algorithms.html#brrzwpf-22
* For details
* @return a pair of <primal, dual> solutions
*/
std::pair<VectorValues, VectorValues> optimize() const;
};
} // namespace gtsam