gtsam/gtsam_unstable/geometry/triangulation.h

252 lines
8.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file triangulation.h
* @brief Functions for triangulation
* @date July 31, 2013
* @author Chris Beall
*/
#pragma once
#include <vector>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <boost/foreach.hpp>
#include <boost/assign.hpp>
#include <boost/assign/std/vector.hpp>
#include <gtsam_unstable/base/dllexport.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/ProjectionFactor.h>
namespace gtsam {
/// Exception thrown by triangulateDLT when SVD returns rank < 3
class TriangulationUnderconstrainedException: public std::runtime_error {
public:
TriangulationUnderconstrainedException() :
std::runtime_error("Triangulation Underconstrained Exception.") {
}
};
/// Exception thrown by triangulateDLT when landmark is behind one or more of the cameras
class TriangulationCheiralityException: public std::runtime_error {
public:
TriangulationCheiralityException() :
std::runtime_error(
"Triangulation Cheirality Exception: The resulting landmark is behind one or more cameras.") {
}
};
/* ************************************************************************* */
// See Hartley and Zisserman, 2nd Ed., page 312
/**
*
* @param poses Camera poses
* @param projection_matrices Projection matrices (K*P^-1)
* @param measurements 2D measurements
* @param Ks vector of calibrations
* @param rank_tol SVD rank tolerance
* @param Flag to turn on nonlinear refinement of triangulation
* @return Triangulated Point3
*/
template<class CALIBRATION>
Point3 triangulateDLT(const std::vector<Pose3>& poses,
const std::vector<Matrix>& projection_matrices,
const std::vector<Point2>& measurements,
const std::vector<boost::shared_ptr<CALIBRATION> >& Ks, double rank_tol,
bool optimize) {
// number of cameras
size_t m = projection_matrices.size();
// Allocate DLT matrix
Matrix A = zeros(m * 2, 4);
for (size_t i = 0; i < m; i++) {
size_t row = i * 2;
const Matrix& projection = projection_matrices.at(i);
const Point2& p = measurements.at(i);
// build system of equations
A.row(row) = p.x() * projection.row(2) - projection.row(0);
A.row(row + 1) = p.y() * projection.row(2) - projection.row(1);
}
int rank;
double error;
Vector v;
boost::tie(rank, error, v) = DLT(A, rank_tol);
// std::cout << "s " << s.transpose() << std:endl;
if (rank < 3)
throw(TriangulationUnderconstrainedException());
// Create 3D point from eigenvector
Point3 point = Point3(sub((v / v(3)), 0, 3));
if (optimize) {
// Create a factor graph
NonlinearFactorGraph graph;
gtsam::Values values;
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
// Initial landmark value
Key landmarkKey = Symbol('p', 0);
values.insert(landmarkKey, point);
// Create all projection factors, as well as priors on poses
Key i = 0;
BOOST_FOREACH(const Point2 &z_i, measurements) {
// Factor for pose i
typedef GenericProjectionFactor<Pose3, Point3, CALIBRATION> ProjectionFactor;
ProjectionFactor projectionFactor(z_i, unit2, i, landmarkKey, Ks[i]);
graph.push_back(projectionFactor);
// Prior on pose
// Frank says: this is a terrible idea: we turn a 3dof problem into a much more difficult problem
typedef PriorFactor<Pose3> Pose3Prior;
graph.push_back(Pose3Prior(i, poses[i], prior_model));
// Initial pose values
values.insert(i, poses[i]);
i++;
}
// Optimize
LevenbergMarquardtParams params;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
params.verbosity = NonlinearOptimizerParams::ERROR;
params.lambdaInitial = 1;
params.lambdaFactor = 10;
params.maxIterations = 100;
params.absoluteErrorTol = 1.0;
params.verbosityLM = LevenbergMarquardtParams::SILENT;
params.verbosity = NonlinearOptimizerParams::SILENT;
params.linearSolverType = NonlinearOptimizerParams::MULTIFRONTAL_CHOLESKY;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
Values result = optimizer.optimize();
point = result.at<Point3>(landmarkKey);
}
return point;
}
/**
* Function to triangulate 3D landmark point from an arbitrary number
* of poses (at least 2) using the DLT. The function checks that the
* resulting point lies in front of all cameras, but has no other checks
* to verify the quality of the triangulation.
* @param poses A vector of camera poses
* @param measurements A vector of camera measurements
* @param K The camera calibration (Same for all cameras involved)
* @param rank tolerance, default 1e-9
* @param optimize Flag to turn on nonlinear refinement of triangulation
* @return Returns a Point3 on success, boost::none otherwise.
*/
template<class CALIBRATION>
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
const std::vector<Point2>& measurements, const CALIBRATION& K,
double rank_tol = 1e-9, bool optimize = false) {
assert(poses.size() == measurements.size());
if (poses.size() < 2)
throw(TriangulationUnderconstrainedException());
std::vector<Matrix> projection_matrices;
// construct projection matrices from poses & calibration
BOOST_FOREACH(const Pose3& pose, poses) {
projection_matrices.push_back(
K.K() * sub(pose.inverse().matrix(), 0, 3, 0, 4));
// std::cout << "Calibration i \n" << K.K() << std::endl;
// std::cout << "rank_tol i \n" << rank_tol << std::endl;
}
// create vector with shared pointer to calibration (all the same in this case)
boost::shared_ptr<CALIBRATION> sharedK = boost::make_shared<CALIBRATION>(K);
std::vector<boost::shared_ptr<CALIBRATION> > Ks(poses.size(), sharedK);
Point3 triangulated_point = triangulateDLT(poses, projection_matrices,
measurements, Ks, rank_tol, optimize);
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
// verify that the triangulated point lies infront of all cameras
BOOST_FOREACH(const Pose3& pose, poses) {
const Point3& p_local = pose.transform_to(triangulated_point);
if(p_local.z() <= 0)
throw(TriangulationCheiralityException());
}
#endif
return triangulated_point;
}
/**
* Function to triangulate 3D landmark point from an arbitrary number
* of poses (at least 2) using the DLT. This function is similar to the one
* above, except that each camera has its own calibration. The function
* checks that the resulting point lies in front of all cameras, but has
* no other checks to verify the quality of the triangulation.
* @param poses A vector of camera poses
* @param measurements A vector of camera measurements
* @param Ks Vector of camera calibrations
* @param rank tolerance, default 1e-9
* @param optimize Flag to turn on nonlinear refinement of triangulation
* @return Returns a Point3 on success, boost::none otherwise.
*/
template<class CALIBRATION>
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
const std::vector<Point2>& measurements,
const std::vector<boost::shared_ptr<CALIBRATION> >& Ks, double rank_tol =
1e-9, bool optimize = false) {
assert(poses.size() == measurements.size());
assert(poses.size() == Ks.size());
if (poses.size() < 2)
throw(TriangulationUnderconstrainedException());
std::vector<Matrix> projection_matrices;
// construct projection matrices from poses & calibration
for (size_t i = 0; i < poses.size(); i++) {
projection_matrices.push_back(
Ks.at(i)->K() * sub(poses.at(i).inverse().matrix(), 0, 3, 0, 4));
// std::cout << "2Calibration i \n" << Ks.at(i)->K() << std::endl;
// std::cout << "2rank_tol i \n" << rank_tol << std::endl;
}
Point3 triangulated_point = triangulateDLT(poses, projection_matrices,
measurements, Ks, rank_tol, optimize);
// verify that the triangulated point lies infront of all cameras
BOOST_FOREACH(const Pose3& pose, poses) {
const Point3& p_local = pose.transform_to(triangulated_point);
if (p_local.z() <= 0)
throw(TriangulationCheiralityException());
}
return triangulated_point;
}
} // \namespace gtsam