363 lines
15 KiB
C++
363 lines
15 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SmartProjectionFactorTesting.cpp
|
|
* @brief Example usage of SmartProjectionFactor using real datasets
|
|
* @date August, 2013
|
|
* @author Luca Carlone
|
|
*/
|
|
|
|
// Use a map to store landmark/smart factor pairs
|
|
#include <gtsam/base/FastMap.h>
|
|
|
|
// Both relative poses and recovered trajectory poses will be stored as Pose3 objects
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/geometry/Cal3Bundler.h>
|
|
|
|
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
|
// Here we will use Symbols
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
// We want to use iSAM2 to solve the range-SLAM problem incrementally
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
|
|
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
|
|
// and initial guesses for any new variables used in the added factors
|
|
#include <gtsam/nonlinear/Values.h>
|
|
|
|
// We will use a non-linear solver to batch-initialize from the first 150 frames
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
|
// have been provided with the library for solving robotics SLAM problems.
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/dataset.h>
|
|
#include <gtsam_unstable/slam/SmartProjectionFactorsCreator.h>
|
|
#include <gtsam_unstable/slam/GenericProjectionFactorsCreator.h>
|
|
|
|
// Standard headers, added last, so we know headers above work on their own
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/assign.hpp>
|
|
#include <boost/assign/std/vector.hpp>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost::assign;
|
|
namespace NM = gtsam::noiseModel;
|
|
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
typedef PriorFactor<Pose3> Pose3Prior;
|
|
typedef FastMap<Key, int> OrderingMap;
|
|
|
|
typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> SmartFactorsCreator;
|
|
typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> ProjectionFactorsCreator;
|
|
|
|
bool debug = false;
|
|
|
|
|
|
void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr<Ordering> &ordering) {
|
|
// Optimization parameters
|
|
LevenbergMarquardtParams params;
|
|
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
|
params.verbosity = NonlinearOptimizerParams::ERROR;
|
|
params.lambdaInitial = 1;
|
|
// Other parameters: if needed
|
|
// params.lambdaFactor = 10;
|
|
// Profile a single iteration
|
|
// params.maxIterations = 1;
|
|
// params.relativeErrorTol = 1e-5;
|
|
// params.absoluteErrorTol = 1.0;
|
|
cout << "==================== Optimization ==================" << endl;
|
|
cout << "- Number of factors: " << graph.size() << endl;
|
|
cout << "- Number of variables: " << graphValues->size() << endl;
|
|
|
|
params.print("PARAMETERS FOR LM: \n");
|
|
|
|
if (debug) {
|
|
cout << "\n\n===============================================\n\n";
|
|
graph.print("thegraph");
|
|
}
|
|
cout << "-----------------------------------------------------" << endl;
|
|
|
|
if (ordering && ordering->size() > 0) {
|
|
std::cout << "Starting graph optimization with user specified ordering" << std::endl;
|
|
params.ordering = *ordering;
|
|
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
|
|
gttic_(GenericProjectionFactorExample_kitti);
|
|
result = optimizer.optimize();
|
|
gttoc_(GenericProjectionFactorExample_kitti);
|
|
tictoc_finishedIteration_();
|
|
cout << "-----------------------------------------------------" << endl;
|
|
std::cout << "Number of outer LM iterations: " << optimizer.state().iterations << std::endl;
|
|
std::cout << "Total number of LM iterations (inner and outer): " << optimizer.getInnerIterations() << std::endl;
|
|
|
|
} else {
|
|
std::cout << "Starting graph optimization with COLAMD ordering" << std::endl;
|
|
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
|
|
params.ordering = Ordering::COLAMD(graph);
|
|
gttic_(smartProjectionFactorExample);
|
|
result = optimizer.optimize();
|
|
gttoc_(smartProjectionFactorExample);
|
|
tictoc_finishedIteration_();
|
|
cout << "-----------------------------------------------------" << endl;
|
|
std::cout << "Number of outer LM iterations: " << optimizer.state().iterations << std::endl;
|
|
std::cout << "Total number of LM iterations (inner and outer): " << optimizer.getInnerIterations() << std::endl;
|
|
|
|
//*ordering = params.ordering;
|
|
if (params.ordering) {
|
|
if(debug) std::cout << "Graph size: " << graph.size() << " Ordering: " << params.ordering->size() << std::endl;
|
|
ordering = boost::make_shared<Ordering>(*(new Ordering()));
|
|
*ordering = *params.ordering;
|
|
} else {
|
|
std::cout << "WARNING: NULL ordering!" << std::endl;
|
|
}
|
|
}
|
|
cout << "======================================================" << endl;
|
|
}
|
|
|
|
void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
|
|
GaussNewtonParams params;
|
|
//params.maxIterations = 1;
|
|
params.verbosity = NonlinearOptimizerParams::DELTA;
|
|
|
|
GaussNewtonOptimizer optimizer(graph, *graphValues, params);
|
|
gttic_(smartProjectionFactorExample);
|
|
result = optimizer.optimize();
|
|
gttoc_(smartProjectionFactorExample);
|
|
tictoc_finishedIteration_();
|
|
}
|
|
|
|
void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
|
|
ISAM2 isam;
|
|
gttic_(smartProjectionFactorExample);
|
|
isam.update(graph, *graphValues);
|
|
result = isam.calculateEstimate();
|
|
gttoc_(smartProjectionFactorExample);
|
|
tictoc_finishedIteration_();
|
|
}
|
|
|
|
// ************************************************************************************************
|
|
// ************************************************************************************************
|
|
// main
|
|
int main(int argc, char** argv) {
|
|
|
|
bool useSmartProjectionFactor = true; // default choice is to use the smart projection factors
|
|
bool doTriangulation = true; // default choice is to initialize points from triangulation (only for standard projection factors)
|
|
|
|
bool addNoise = false; // add (fixed) noise to the initial guess of camera poses
|
|
bool useLM = true;
|
|
|
|
// Smart factors settings
|
|
double linThreshold = -1.0; // negative is disabled
|
|
double rankTolerance = 1.0;
|
|
|
|
// Get home directory and default dataset
|
|
string HOME = getenv("HOME");
|
|
string datasetFile = HOME + "/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt";
|
|
|
|
// --------------- READ USER INPUTS (main arguments) ------------------------------------
|
|
// COMMAND TO RUN (EXAMPLE): ./SmartProjectionFactorExampleBAL smart triangulation=0 /home/aspn/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt
|
|
if(argc>1){ // if we have any input arguments
|
|
// Arg1: "smart" or "standard" (select if to use smart factors or standard projection factors)
|
|
// Arg2: "triangulation=0" or "triangulation=1" (select whether to initialize initial guess for points using triangulation)
|
|
// Arg3: name of the dataset, e.g., /home/aspn/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt
|
|
string useSmartArgument = argv[1];
|
|
string useTriangulationArgument = argv[2];
|
|
datasetFile = argv[3];
|
|
|
|
if(useSmartArgument.compare("smart")==0){
|
|
useSmartProjectionFactor=true;
|
|
} else{
|
|
if(useSmartArgument.compare("standard")==0){
|
|
useSmartProjectionFactor=false;
|
|
}else{
|
|
cout << "Selected wrong option for input argument - useSmartProjectionFactor" << endl;
|
|
exit(1);
|
|
}
|
|
}
|
|
if(useTriangulationArgument.compare("triangulation=1")==0){
|
|
doTriangulation=true;
|
|
} else{
|
|
if(useTriangulationArgument.compare("triangulation=0")==0){
|
|
doTriangulation=false;
|
|
}else{
|
|
cout << "Selected wrong option for input argument - doTriangulation - not important for SmartFactors" << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
// --------------- PRINT USER's CHOICE ------------------------------------
|
|
std::cout << "- useSmartFactor: " << useSmartProjectionFactor << std::endl;
|
|
std::cout << "- doTriangulation: " << doTriangulation << std::endl;
|
|
std::cout << "- datasetFile: " << datasetFile << std::endl;
|
|
|
|
if (linThreshold >= 0)
|
|
std::cout << "- linThreshold (negative is disabled): " << linThreshold << std::endl;
|
|
|
|
if(addNoise)
|
|
std::cout << "- Noise: " << addNoise << std::endl;
|
|
|
|
// --------------- READ INPUT DATA ----------------------------------------
|
|
std::cout << "- reading dataset from file... " << std::endl;
|
|
SfM_data inputData;
|
|
readBAL(datasetFile, inputData);
|
|
|
|
// --------------- CREATE FACTOR GRAPH ------------------------------------
|
|
std::cout << "- creating factor graph... " << std::endl;
|
|
static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2)); // pixel noise
|
|
boost::shared_ptr<Ordering> ordering(new Ordering());
|
|
|
|
NonlinearFactorGraph graphSmart;
|
|
gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values());
|
|
|
|
NonlinearFactorGraph graphProjection;
|
|
gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values());
|
|
|
|
std::vector< boost::shared_ptr<Cal3Bundler> > K_cameras;
|
|
boost::shared_ptr<Cal3Bundler> K(new Cal3Bundler());
|
|
|
|
SmartFactorsCreator smartCreator(pixel_sigma, K, rankTolerance, linThreshold); // this initial K is not used
|
|
ProjectionFactorsCreator projectionCreator(pixel_sigma, K); // this initial K is not used
|
|
int numLandmarks=0;
|
|
|
|
if(debug){
|
|
std::cout << "Constructors for factor creators " << std::endl;
|
|
std::cout << "inputData.number_cameras() " << inputData.number_cameras() << std::endl;
|
|
std::cout << "inputData.number_tracks() " << inputData.number_tracks() << std::endl;
|
|
}
|
|
|
|
// Load graph values
|
|
gtsam::Values::shared_ptr loadedValues(new gtsam::Values()); // values we read from file
|
|
for (size_t i = 0; i < inputData.number_cameras(); i++){ // for each camera
|
|
Pose3 cameraPose = inputData.cameras[i].pose();
|
|
if(addNoise){
|
|
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3));
|
|
cameraPose = cameraPose.compose(noise_pose);
|
|
}
|
|
loadedValues->insert(X(i), cameraPose); // this will be used for the graphProjection
|
|
graphSmartValues->insert(X(i), cameraPose); // we insert the value for the graphSmart that only contains poses
|
|
}
|
|
if(debug) std::cout << "Initialized values " << std::endl;
|
|
|
|
for (size_t j = 0; j < inputData.number_tracks(); j++){ // for each 3D point
|
|
Point3 point = inputData.tracks[j].p;
|
|
loadedValues->insert(L(j), point);
|
|
}
|
|
if(debug) std::cout << "Initialized points " << std::endl;
|
|
|
|
// Create the graph
|
|
for (size_t j = 0; j < inputData.number_tracks(); j++){ // for each 3D point
|
|
SfM_Track track = inputData.tracks[j];
|
|
Point3 point = track.p;
|
|
|
|
for (size_t k = 0; k < track.number_measurements(); k++){ // for each measurement of the point
|
|
SfM_Measurement measurement = track.measurements[k];
|
|
int i = measurement.first; // camera id
|
|
double u = measurement.second.x();
|
|
double v = measurement.second.y();
|
|
boost::shared_ptr<Cal3Bundler> Ki(new Cal3Bundler(inputData.cameras[i].calibration()));
|
|
|
|
if (useSmartProjectionFactor) {
|
|
// use SMART PROJECTION FACTORS
|
|
smartCreator.add(L(j), X(i), Point2(u,v), pixel_sigma, Ki, graphSmart);
|
|
numLandmarks = smartCreator.getNumLandmarks();
|
|
} else {
|
|
// or STANDARD PROJECTION FACTORS
|
|
projectionCreator.add(L(j), X(i), Point2(u,v), pixel_sigma, Ki, graphProjection);
|
|
numLandmarks = projectionCreator.getNumLandmarks();
|
|
}
|
|
}
|
|
}
|
|
if(debug){
|
|
cout << "Included measurements in the graph " << endl;
|
|
cout << "Number of landmarks " << numLandmarks << endl;
|
|
cout << "Before call to update: ------------------ " << endl;
|
|
cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
|
|
Values valuesProjPoses = graphProjectionValues->filter<Pose3>();
|
|
cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
|
|
Values valuesProjPoints = graphProjectionValues->filter<Point3>();
|
|
cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
|
|
cout << "---------------------------------------------------------- " << endl;
|
|
}
|
|
|
|
if (!useSmartProjectionFactor) {
|
|
projectionCreator.update(graphProjection, loadedValues, graphProjectionValues, doTriangulation);
|
|
ordering = projectionCreator.getOrdering();
|
|
}
|
|
|
|
if(debug) {
|
|
cout << "After call to update: ------------------ " << endl;
|
|
cout << "--------------------------------------------------------- " << endl;
|
|
cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
|
|
Values valuesProjPoses = graphProjectionValues->filter<Pose3>();
|
|
cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
|
|
Values valuesProjPoints = graphProjectionValues->filter<Point3>();
|
|
cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
|
|
cout << "---------------------------------------------------------- " << endl;
|
|
}
|
|
|
|
Values result;
|
|
if (useSmartProjectionFactor) {
|
|
if (useLM)
|
|
optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
|
|
else
|
|
optimizeGraphISAM2(graphSmart, graphSmartValues, result);
|
|
cout << "Initial reprojection error (smart): " << graphSmart.error(*graphSmartValues) << endl;;
|
|
cout << "Final reprojection error (smart): " << graphSmart.error(result) << endl;;
|
|
} else {
|
|
if (useLM)
|
|
optimizeGraphLM(graphProjection, graphProjectionValues, result, ordering);
|
|
else
|
|
optimizeGraphISAM2(graphProjection, graphProjectionValues, result);
|
|
cout << "Initial reprojection error (standard): " << graphProjection.error(*graphProjectionValues) << endl;;
|
|
cout << "Final reprojection error (standard): " << graphProjection.error(result) << endl;;
|
|
}
|
|
|
|
tictoc_print_();
|
|
cout << "===================================================" << endl;
|
|
|
|
// --------------- WRITE OUTPUT TO BAL FILE ----------------------------------------
|
|
if(useSmartProjectionFactor){
|
|
smartCreator.computePoints(result);
|
|
}
|
|
|
|
cout << "- writing results to (BAL) file... " << endl;
|
|
std::size_t stringCut1 = datasetFile.rfind("/");
|
|
std::size_t stringCut2 = datasetFile.rfind(".txt");
|
|
string outputFile;
|
|
|
|
if(useSmartProjectionFactor){
|
|
outputFile = "." + datasetFile.substr(stringCut1, stringCut2-stringCut1) + "-optimized-smart.txt";
|
|
}else{
|
|
if(doTriangulation){
|
|
outputFile = "." + datasetFile.substr(stringCut1, stringCut2-stringCut1) + "-optimized-standard-triangulation.txt";
|
|
}else{
|
|
outputFile = "." + datasetFile.substr(stringCut1, stringCut2-stringCut1) + "-optimized-standard.txt";
|
|
}
|
|
}
|
|
|
|
|
|
|
|
if(debug) cout << outputFile << endl;
|
|
writeBALfromValues(outputFile, inputData, result);
|
|
cout << "- mission accomplished! " << endl;
|
|
exit(0);
|
|
}
|
|
|