/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SmartProjectionFactorTesting.cpp * @brief Example usage of SmartProjectionFactor using real datasets * @date August, 2013 * @author Luca Carlone */ // Use a map to store landmark/smart factor pairs #include // Both relative poses and recovered trajectory poses will be stored as Pose3 objects #include #include #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // We want to use iSAM2 to solve the range-SLAM problem incrementally #include // iSAM2 requires as input a set set of new factors to be added stored in a factor graph, // and initial guesses for any new variables used in the added factors #include // We will use a non-linear solver to batch-initialize from the first 150 frames #include #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics SLAM problems. #include #include #include #include // Standard headers, added last, so we know headers above work on their own #include #include #include #include #include using namespace std; using namespace gtsam; using namespace boost::assign; namespace NM = gtsam::noiseModel; using symbol_shorthand::X; using symbol_shorthand::L; typedef PriorFactor Pose3Prior; typedef FastMap OrderingMap; typedef SmartProjectionFactorsCreator SmartFactorsCreator; typedef GenericProjectionFactorsCreator ProjectionFactorsCreator; bool debug = false; void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr &ordering) { // Optimization parameters LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; params.lambdaInitial = 1; // Other parameters: if needed // params.lambdaFactor = 10; // Profile a single iteration // params.maxIterations = 1; // params.relativeErrorTol = 1e-5; // params.absoluteErrorTol = 1.0; cout << "==================== Optimization ==================" << endl; cout << "- Number of factors: " << graph.size() << endl; cout << "- Number of variables: " << graphValues->size() << endl; params.print("PARAMETERS FOR LM: \n"); if (debug) { cout << "\n\n===============================================\n\n"; graph.print("thegraph"); } cout << "-----------------------------------------------------" << endl; if (ordering && ordering->size() > 0) { std::cout << "Starting graph optimization with user specified ordering" << std::endl; params.ordering = *ordering; LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params); gttic_(GenericProjectionFactorExample_kitti); result = optimizer.optimize(); gttoc_(GenericProjectionFactorExample_kitti); tictoc_finishedIteration_(); cout << "-----------------------------------------------------" << endl; std::cout << "Number of outer LM iterations: " << optimizer.state().iterations << std::endl; std::cout << "Total number of LM iterations (inner and outer): " << optimizer.getInnerIterations() << std::endl; } else { std::cout << "Starting graph optimization with COLAMD ordering" << std::endl; LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params); params.ordering = Ordering::COLAMD(graph); gttic_(smartProjectionFactorExample); result = optimizer.optimize(); gttoc_(smartProjectionFactorExample); tictoc_finishedIteration_(); cout << "-----------------------------------------------------" << endl; std::cout << "Number of outer LM iterations: " << optimizer.state().iterations << std::endl; std::cout << "Total number of LM iterations (inner and outer): " << optimizer.getInnerIterations() << std::endl; //*ordering = params.ordering; if (params.ordering) { if(debug) std::cout << "Graph size: " << graph.size() << " Ordering: " << params.ordering->size() << std::endl; ordering = boost::make_shared(*(new Ordering())); *ordering = *params.ordering; } else { std::cout << "WARNING: NULL ordering!" << std::endl; } } cout << "======================================================" << endl; } void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) { GaussNewtonParams params; //params.maxIterations = 1; params.verbosity = NonlinearOptimizerParams::DELTA; GaussNewtonOptimizer optimizer(graph, *graphValues, params); gttic_(smartProjectionFactorExample); result = optimizer.optimize(); gttoc_(smartProjectionFactorExample); tictoc_finishedIteration_(); } void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) { ISAM2 isam; gttic_(smartProjectionFactorExample); isam.update(graph, *graphValues); result = isam.calculateEstimate(); gttoc_(smartProjectionFactorExample); tictoc_finishedIteration_(); } // ************************************************************************************************ // ************************************************************************************************ // main int main(int argc, char** argv) { bool useSmartProjectionFactor = true; // default choice is to use the smart projection factors bool doTriangulation = true; // default choice is to initialize points from triangulation (only for standard projection factors) bool addNoise = false; // add (fixed) noise to the initial guess of camera poses bool useLM = true; // Smart factors settings double linThreshold = -1.0; // negative is disabled double rankTolerance = 1.0; // Get home directory and default dataset string HOME = getenv("HOME"); string datasetFile = HOME + "/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt"; // --------------- READ USER INPUTS (main arguments) ------------------------------------ // COMMAND TO RUN (EXAMPLE): ./SmartProjectionFactorExampleBAL smart triangulation=0 /home/aspn/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt if(argc>1){ // if we have any input arguments // Arg1: "smart" or "standard" (select if to use smart factors or standard projection factors) // Arg2: "triangulation=0" or "triangulation=1" (select whether to initialize initial guess for points using triangulation) // Arg3: name of the dataset, e.g., /home/aspn/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt string useSmartArgument = argv[1]; string useTriangulationArgument = argv[2]; datasetFile = argv[3]; if(useSmartArgument.compare("smart")==0){ useSmartProjectionFactor=true; } else{ if(useSmartArgument.compare("standard")==0){ useSmartProjectionFactor=false; }else{ cout << "Selected wrong option for input argument - useSmartProjectionFactor" << endl; exit(1); } } if(useTriangulationArgument.compare("triangulation=1")==0){ doTriangulation=true; } else{ if(useTriangulationArgument.compare("triangulation=0")==0){ doTriangulation=false; }else{ cout << "Selected wrong option for input argument - doTriangulation - not important for SmartFactors" << endl; } } } // --------------- PRINT USER's CHOICE ------------------------------------ std::cout << "- useSmartFactor: " << useSmartProjectionFactor << std::endl; std::cout << "- doTriangulation: " << doTriangulation << std::endl; std::cout << "- datasetFile: " << datasetFile << std::endl; if (linThreshold >= 0) std::cout << "- linThreshold (negative is disabled): " << linThreshold << std::endl; if(addNoise) std::cout << "- Noise: " << addNoise << std::endl; // --------------- READ INPUT DATA ---------------------------------------- std::cout << "- reading dataset from file... " << std::endl; SfM_data inputData; readBAL(datasetFile, inputData); // --------------- CREATE FACTOR GRAPH ------------------------------------ std::cout << "- creating factor graph... " << std::endl; static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2)); // pixel noise boost::shared_ptr ordering(new Ordering()); NonlinearFactorGraph graphSmart; gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values()); NonlinearFactorGraph graphProjection; gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values()); std::vector< boost::shared_ptr > K_cameras; boost::shared_ptr K(new Cal3Bundler()); SmartFactorsCreator smartCreator(pixel_sigma, K, rankTolerance, linThreshold); // this initial K is not used ProjectionFactorsCreator projectionCreator(pixel_sigma, K); // this initial K is not used int numLandmarks=0; if(debug){ std::cout << "Constructors for factor creators " << std::endl; std::cout << "inputData.number_cameras() " << inputData.number_cameras() << std::endl; std::cout << "inputData.number_tracks() " << inputData.number_tracks() << std::endl; } // Load graph values gtsam::Values::shared_ptr loadedValues(new gtsam::Values()); // values we read from file for (size_t i = 0; i < inputData.number_cameras(); i++){ // for each camera Pose3 cameraPose = inputData.cameras[i].pose(); if(addNoise){ Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3)); cameraPose = cameraPose.compose(noise_pose); } loadedValues->insert(X(i), cameraPose); // this will be used for the graphProjection graphSmartValues->insert(X(i), cameraPose); // we insert the value for the graphSmart that only contains poses } if(debug) std::cout << "Initialized values " << std::endl; for (size_t j = 0; j < inputData.number_tracks(); j++){ // for each 3D point Point3 point = inputData.tracks[j].p; loadedValues->insert(L(j), point); } if(debug) std::cout << "Initialized points " << std::endl; // Create the graph for (size_t j = 0; j < inputData.number_tracks(); j++){ // for each 3D point SfM_Track track = inputData.tracks[j]; Point3 point = track.p; for (size_t k = 0; k < track.number_measurements(); k++){ // for each measurement of the point SfM_Measurement measurement = track.measurements[k]; int i = measurement.first; // camera id double u = measurement.second.x(); double v = measurement.second.y(); boost::shared_ptr Ki(new Cal3Bundler(inputData.cameras[i].calibration())); if (useSmartProjectionFactor) { // use SMART PROJECTION FACTORS smartCreator.add(L(j), X(i), Point2(u,v), pixel_sigma, Ki, graphSmart); numLandmarks = smartCreator.getNumLandmarks(); } else { // or STANDARD PROJECTION FACTORS projectionCreator.add(L(j), X(i), Point2(u,v), pixel_sigma, Ki, graphProjection); numLandmarks = projectionCreator.getNumLandmarks(); } } } if(debug){ cout << "Included measurements in the graph " << endl; cout << "Number of landmarks " << numLandmarks << endl; cout << "Before call to update: ------------------ " << endl; cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl; Values valuesProjPoses = graphProjectionValues->filter(); cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl; Values valuesProjPoints = graphProjectionValues->filter(); cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl; cout << "---------------------------------------------------------- " << endl; } if (!useSmartProjectionFactor) { projectionCreator.update(graphProjection, loadedValues, graphProjectionValues, doTriangulation); ordering = projectionCreator.getOrdering(); } if(debug) { cout << "After call to update: ------------------ " << endl; cout << "--------------------------------------------------------- " << endl; cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl; Values valuesProjPoses = graphProjectionValues->filter(); cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl; Values valuesProjPoints = graphProjectionValues->filter(); cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl; cout << "---------------------------------------------------------- " << endl; } Values result; if (useSmartProjectionFactor) { if (useLM) optimizeGraphLM(graphSmart, graphSmartValues, result, ordering); else optimizeGraphISAM2(graphSmart, graphSmartValues, result); cout << "Initial reprojection error (smart): " << graphSmart.error(*graphSmartValues) << endl;; cout << "Final reprojection error (smart): " << graphSmart.error(result) << endl;; } else { if (useLM) optimizeGraphLM(graphProjection, graphProjectionValues, result, ordering); else optimizeGraphISAM2(graphProjection, graphProjectionValues, result); cout << "Initial reprojection error (standard): " << graphProjection.error(*graphProjectionValues) << endl;; cout << "Final reprojection error (standard): " << graphProjection.error(result) << endl;; } tictoc_print_(); cout << "===================================================" << endl; // --------------- WRITE OUTPUT TO BAL FILE ---------------------------------------- if(useSmartProjectionFactor){ smartCreator.computePoints(result); } cout << "- writing results to (BAL) file... " << endl; std::size_t stringCut1 = datasetFile.rfind("/"); std::size_t stringCut2 = datasetFile.rfind(".txt"); string outputFile; if(useSmartProjectionFactor){ outputFile = "." + datasetFile.substr(stringCut1, stringCut2-stringCut1) + "-optimized-smart.txt"; }else{ if(doTriangulation){ outputFile = "." + datasetFile.substr(stringCut1, stringCut2-stringCut1) + "-optimized-standard-triangulation.txt"; }else{ outputFile = "." + datasetFile.substr(stringCut1, stringCut2-stringCut1) + "-optimized-standard.txt"; } } if(debug) cout << outputFile << endl; writeBALfromValues(outputFile, inputData, result); cout << "- mission accomplished! " << endl; exit(0); }