197 lines
5.1 KiB
C++
197 lines
5.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testBAD.cpp
|
|
* @date September 18, 2014
|
|
* @author Frank Dellaert
|
|
* @brief unit tests for Block Automatic Differentiation
|
|
*/
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam/slam/GeneralSFMFactor.h>
|
|
#include <gtsam/inference/Key.h>
|
|
#include <gtsam/base/Testable.h>
|
|
|
|
#include <boost/make_shared.hpp>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/// Constant Expression
|
|
template<class T>
|
|
class ConstantExpression {
|
|
|
|
T value_;
|
|
|
|
public:
|
|
|
|
/// Constructor with a value, yielding a constant
|
|
ConstantExpression(const T& value) :
|
|
value_(value) {
|
|
}
|
|
|
|
T value(const Values& values) const {
|
|
return value_;
|
|
}
|
|
};
|
|
|
|
/// Leaf Expression
|
|
template<class T>
|
|
class LeafExpression {
|
|
|
|
Key key_;
|
|
|
|
public:
|
|
|
|
/// Constructor with a single key
|
|
LeafExpression(Key key):key_(key) {
|
|
}
|
|
|
|
T value(const Values& values) const {
|
|
return values.at<T>(key_);
|
|
}
|
|
};
|
|
|
|
/// Expression version of transform
|
|
template<class E1, class E2>
|
|
LeafExpression<Point3> transformTo(const E1& x, const E2& p) {
|
|
return LeafExpression<Point3>(0);
|
|
}
|
|
|
|
/// Expression version of project
|
|
template<class E>
|
|
LeafExpression<Point2> project(const E& p) {
|
|
return LeafExpression<Point2>(0);
|
|
}
|
|
|
|
/// Expression version of uncalibrate
|
|
template<class E1, class E2>
|
|
LeafExpression<Point2> uncalibrate(const E1& K, const E2& p) {
|
|
return LeafExpression<Point2>(0);
|
|
}
|
|
|
|
/// Expression version of Point2.sub
|
|
template<class E1, class E2>
|
|
LeafExpression<Point2> operator -(const E1& p, const E2& q) {
|
|
return LeafExpression<Point2>(0);
|
|
}
|
|
|
|
/// AD Factor
|
|
template<class T, class E>
|
|
class BADFactor: NonlinearFactor {
|
|
|
|
const T measurement_;
|
|
const E expression_;
|
|
|
|
/// get value from expression and calculate error with respect to measurement
|
|
Vector unwhitenedError(const Values& values) const {
|
|
const T& value = expression_.value(values);
|
|
return measurement_.localCoordinates(value);
|
|
}
|
|
|
|
public:
|
|
|
|
/// Constructor
|
|
BADFactor(const T& measurement, const E& expression) :
|
|
measurement_(measurement), expression_(expression) {
|
|
}
|
|
|
|
/**
|
|
* Calculate the error of the factor.
|
|
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
|
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
|
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
|
*/
|
|
virtual double error(const Values& values) const {
|
|
if (this->active(values)) {
|
|
const Vector e = unwhitenedError(values);
|
|
return 0.5 * e.norm();
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
/// get the dimension of the factor (number of rows on linearization)
|
|
size_t dim() const {
|
|
return 0;
|
|
}
|
|
|
|
/// linearize to a GaussianFactor
|
|
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
|
|
// We will construct an n-ary factor below, where terms is a container whose
|
|
// value type is std::pair<Key, Matrix>, specifying the
|
|
// collection of keys and matrices making up the factor.
|
|
std::map<Key, Matrix> terms;
|
|
Vector b = unwhitenedError(values);
|
|
SharedDiagonal model = SharedDiagonal();
|
|
return boost::shared_ptr<JacobianFactor>(
|
|
new JacobianFactor(terms, b, model));
|
|
}
|
|
|
|
};
|
|
}
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST(BAD, test) {
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Pose3());
|
|
values.insert(2, Point3(0, 0, 1));
|
|
values.insert(3, Cal3_S2());
|
|
|
|
// Create old-style factor to create expected value and derivatives
|
|
Point2 measured(0, 1);
|
|
SharedNoiseModel model = noiseModel::Unit::Create(2);
|
|
GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
|
|
double expected_error = old.error(values);
|
|
GaussianFactor::shared_ptr expected = old.linearize(values);
|
|
|
|
// Create leaves
|
|
LeafExpression<Pose3> x(1);
|
|
LeafExpression<Point3> p(2);
|
|
LeafExpression<Cal3_S2> K(3);
|
|
|
|
// Create expression tree
|
|
LeafExpression<Point3> p_cam = transformTo(x, p);
|
|
LeafExpression<Point2> projection = project(p_cam);
|
|
LeafExpression<Point2> uv_hat = uncalibrate(K, projection);
|
|
|
|
// Create factor
|
|
BADFactor<Point2, LeafExpression<Point2> > f(measured, uv_hat);
|
|
|
|
// Check value
|
|
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
|
|
|
|
// Check dimension
|
|
EXPECT_LONGS_EQUAL(0, f.dim());
|
|
|
|
// Check linearization
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
EXPECT( assert_equal(*expected, *gf, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|