167 lines
6.0 KiB
C++
167 lines
6.0 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testPlanarSLAMExample_lago.cpp
|
|
* @brief Unit tests for planar SLAM example using the initialization technique
|
|
* LAGO (Linear Approximation for Graph Optimization)
|
|
*
|
|
* @author Luca Carlone
|
|
* @author Frank Dellaert
|
|
* @date May 14, 2014
|
|
*/
|
|
|
|
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
|
|
// the robot positions and Point2 variables (x, y) to represent the landmark coordinates.
|
|
#include <gtsam/geometry/Pose2.h>
|
|
|
|
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
|
// Here we will use Symbols
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
|
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
|
// Here we will use a RangeBearing factor for the range-bearing measurements to identified
|
|
// landmarks, and Between factors for the relative motion described by odometry measurements.
|
|
// Also, we will initialize the robot at the origin using a Prior factor.
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
|
|
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
|
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <cmath>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost::assign;
|
|
|
|
Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
|
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
|
|
static const double PI = boost::math::constants::pi<double>();
|
|
|
|
/**
|
|
* @brief Initialization technique for planar pose SLAM using
|
|
* LAGO (Linear Approximation for Graph Optimization). see papers:
|
|
*
|
|
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
|
|
* approximation for planar pose graph optimization, IJRR, 2014.
|
|
*
|
|
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
|
|
* for graph-based simultaneous localization and mapping, RSS, 2011.
|
|
*
|
|
* @param graph: nonlinear factor graph including between (Pose2) measurements
|
|
* @return Values: initial guess including orientation estimate from LAGO
|
|
*/
|
|
|
|
/* ************************************************************************* */
|
|
//
|
|
#include <gtsam/inference/graph.h>
|
|
Values initializeLago(const NonlinearFactorGraph& graph) {
|
|
// Find a minimum spanning tree
|
|
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
|
BetweenFactor<Pose2> >(graph);
|
|
|
|
// Order measurements: ordered spanning path first, loop closure later
|
|
|
|
// Extract angles in so2 from relative rotations in SO2
|
|
|
|
// Correct orientations along loops
|
|
|
|
// Create a linear factor graph (LFG) of scalars
|
|
|
|
// Solve the LFG
|
|
|
|
// Store solution of the LFG in values
|
|
Values estimateLago;
|
|
return estimateLago;
|
|
}
|
|
|
|
namespace simple {
|
|
// We consider a small graph:
|
|
// symbolic FG
|
|
// x2 0 1
|
|
// / | \ 1 2
|
|
// / | \ 2 3
|
|
// x3 | x1 2 0
|
|
// \ | / 0 3
|
|
// \ | /
|
|
// x0
|
|
//
|
|
|
|
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
|
|
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
|
|
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
|
|
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
|
|
|
|
NonlinearFactorGraph graph() {
|
|
NonlinearFactorGraph g;
|
|
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
|
|
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
|
|
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
|
|
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
|
|
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
|
|
return g;
|
|
}
|
|
}
|
|
|
|
map<Key, double> misteryFunction(const PredecessorMap<Key>& tree, const NonlinearFactorGraph&){
|
|
|
|
}
|
|
|
|
/* *************************************************************************** */
|
|
TEST( Lago, sumOverLoops ) {
|
|
NonlinearFactorGraph g = simple::graph();
|
|
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
|
BetweenFactor<Pose2> >(g);
|
|
|
|
// check the tree structure
|
|
EXPECT_LONGS_EQUAL(tree[x0], x0);
|
|
EXPECT_LONGS_EQUAL(tree[x1], x0);
|
|
EXPECT_LONGS_EQUAL(tree[x2], x0);
|
|
EXPECT_LONGS_EQUAL(tree[x3], x0);
|
|
|
|
g.print("");
|
|
|
|
map<Key, double> expected;
|
|
expected[x0]= 0;
|
|
expected[x1]= 1.570796; // edge x0->x1 (consistent with edge (x0,x1))
|
|
expected[x2]= -3.141593; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
|
|
expected[x3]= 4.712389; // edge x0->x3 (consistent with edge (x0,x3))
|
|
|
|
map<Key, double> actual;
|
|
actual = misteryFunction(tree, g);
|
|
}
|
|
|
|
/* *************************************************************************** */
|
|
//TEST( Lago, smallGraph_GTmeasurements ) {
|
|
//
|
|
// Values initialGuessLago = initializeLago(simple::graph());
|
|
//
|
|
// DOUBLES_EQUAL(0.0, (initialGuessLago.at<Pose2>(x0)).theta(), 1e-6);
|
|
// DOUBLES_EQUAL(0.5 * PI, (initialGuessLago.at<Pose2>(x1)).theta(), 1e-6);
|
|
// DOUBLES_EQUAL(PI, (initialGuessLago.at<Pose2>(x2)).theta(), 1e-6);
|
|
// DOUBLES_EQUAL(1.5 * PI, (initialGuessLago.at<Pose2>(x3)).theta(), 1e-6);
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|