/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testPlanarSLAMExample_lago.cpp * @brief Unit tests for planar SLAM example using the initialization technique * LAGO (Linear Approximation for Graph Optimization) * * @author Luca Carlone * @author Frank Dellaert * @date May 14, 2014 */ // As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent // the robot positions and Point2 variables (x, y) to represent the landmark coordinates. #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems. // Here we will use a RangeBearing factor for the range-bearing measurements to identified // landmarks, and Between factors for the relative motion described by odometry measurements. // Also, we will initialize the robot at the origin using a Prior factor. #include #include // When the factors are created, we will add them to a Factor Graph. As the factors we are using // are nonlinear factors, we will need a Nonlinear Factor Graph. #include #include #include #include #include using namespace std; using namespace gtsam; using namespace boost::assign; Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3); static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1)); static const double PI = boost::math::constants::pi(); /** * @brief Initialization technique for planar pose SLAM using * LAGO (Linear Approximation for Graph Optimization). see papers: * * L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate * approximation for planar pose graph optimization, IJRR, 2014. * * L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation * for graph-based simultaneous localization and mapping, RSS, 2011. * * @param graph: nonlinear factor graph including between (Pose2) measurements * @return Values: initial guess including orientation estimate from LAGO */ /* ************************************************************************* */ // #include Values initializeLago(const NonlinearFactorGraph& graph) { // Find a minimum spanning tree PredecessorMap tree = findMinimumSpanningTree >(graph); // Order measurements: ordered spanning path first, loop closure later // Extract angles in so2 from relative rotations in SO2 // Correct orientations along loops // Create a linear factor graph (LFG) of scalars // Solve the LFG // Store solution of the LFG in values Values estimateLago; return estimateLago; } namespace simple { // We consider a small graph: // symbolic FG // x2 0 1 // / | \ 1 2 // / | \ 2 3 // x3 | x1 2 0 // \ | / 0 3 // \ | / // x0 // Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000); Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796); Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593); Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389); NonlinearFactorGraph graph() { NonlinearFactorGraph g; g.add(BetweenFactor(x0, x1, pose0.between(pose1), model)); g.add(BetweenFactor(x1, x2, pose1.between(pose2), model)); g.add(BetweenFactor(x2, x3, pose2.between(pose3), model)); g.add(BetweenFactor(x2, x0, pose2.between(pose0), model)); g.add(BetweenFactor(x0, x3, pose0.between(pose3), model)); return g; } } map misteryFunction(const PredecessorMap& tree, const NonlinearFactorGraph&){ } /* *************************************************************************** */ TEST( Lago, sumOverLoops ) { NonlinearFactorGraph g = simple::graph(); PredecessorMap tree = findMinimumSpanningTree >(g); // check the tree structure EXPECT_LONGS_EQUAL(tree[x0], x0); EXPECT_LONGS_EQUAL(tree[x1], x0); EXPECT_LONGS_EQUAL(tree[x2], x0); EXPECT_LONGS_EQUAL(tree[x3], x0); g.print(""); map expected; expected[x0]= 0; expected[x1]= 1.570796; // edge x0->x1 (consistent with edge (x0,x1)) expected[x2]= -3.141593; // edge x0->x2 (traversed backwards wrt edge (x2,x0)) expected[x3]= 4.712389; // edge x0->x3 (consistent with edge (x0,x3)) map actual; actual = misteryFunction(tree, g); } /* *************************************************************************** */ //TEST( Lago, smallGraph_GTmeasurements ) { // // Values initialGuessLago = initializeLago(simple::graph()); // // DOUBLES_EQUAL(0.0, (initialGuessLago.at(x0)).theta(), 1e-6); // DOUBLES_EQUAL(0.5 * PI, (initialGuessLago.at(x1)).theta(), 1e-6); // DOUBLES_EQUAL(PI, (initialGuessLago.at(x2)).theta(), 1e-6); // DOUBLES_EQUAL(1.5 * PI, (initialGuessLago.at(x3)).theta(), 1e-6); //} /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */