200 lines
9.1 KiB
Matlab
200 lines
9.1 KiB
Matlab
function [ graph projectionFactorSeenBy] = covarianceAnalysisCreateFactorGraph( measurements, values, noiseModels, measurementNoise, options, metadata)
|
|
% Create a factor graph based on provided measurements, values, and noises.
|
|
% Used for covariance analysis scripts.
|
|
% 'options' contains fields for including various factor types.
|
|
% 'metadata' is a storage variable for miscellaneous factor-specific values
|
|
% Authors: Luca Carlone, David Jensen
|
|
% Date: 2014/04/16
|
|
|
|
import gtsam.*;
|
|
|
|
graph = NonlinearFactorGraph;
|
|
|
|
% Iterate through the trajectory
|
|
for i=0:length(measurements)
|
|
% Get the current pose
|
|
currentPoseKey = symbol('x', i);
|
|
currentPose = values.atPose3(currentPoseKey);
|
|
|
|
if i==0
|
|
%% first time step, add priors
|
|
% Pose prior (poses used for all factors)
|
|
noisyInitialPoseVector = Pose3.Logmap(currentPose) + measurementNoise.poseNoiseVector .* randn(6,1);
|
|
initialPose = Pose3.Expmap(noisyInitialPoseVector);
|
|
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noiseModels.noisePose));
|
|
|
|
% IMU velocity and bias priors
|
|
if options.includeIMUFactors == 1
|
|
currentVelKey = symbol('v', 0);
|
|
currentVel = values.atPoint3(currentVelKey);
|
|
graph.add(PriorFactorVector(currentVelKey, currentVel, noiseModels.noiseVel));
|
|
|
|
currentBiasKey = symbol('b', 0);
|
|
currentBias = values.atPoint3(currentBiasKey);
|
|
graph.add(PriorFactorConstantBias(currentBiasKey, currentBias, noiseModels.noisePriorBias));
|
|
end
|
|
|
|
%% Create a SmartProjectionFactor for each landmark
|
|
projectionFactorSeenBy = [];
|
|
if options.includeCameraFactors == 1
|
|
for j=1:options.numberOfLandmarks
|
|
SmartProjectionFactors(j) = SmartProjectionPoseFactorCal3_S2(0.01);
|
|
% Use constructor with default values, but express the pose of the
|
|
% camera as a 90 degree rotation about the X axis
|
|
% SmartProjectionFactors(j) = SmartProjectionPoseFactorCal3_S2( ...
|
|
% 1, ... % rankTol
|
|
% -1, ... % linThreshold
|
|
% false, ... % manageDegeneracy
|
|
% false, ... % enableEPI
|
|
% metadata.camera.bodyPoseCamera); % Pose of camera in body frame
|
|
end
|
|
projectionFactorSeenBy = zeros(options.numberOfLandmarks,1);
|
|
end
|
|
|
|
else
|
|
|
|
%% Add Between factors
|
|
if options.includeBetweenFactors == 1
|
|
prevPoseKey = symbol('x', i-1);
|
|
% Create the noisy pose estimate
|
|
deltaPose = Pose3.Expmap(measurements(i).deltaVector ...
|
|
+ (measurementNoise.poseNoiseVector .* randn(6,1))); % added noise
|
|
% Add the between factor to the graph
|
|
graph.add(BetweenFactorPose3(prevPoseKey, currentPoseKey, deltaPose, noiseModels.noisePose));
|
|
end % end of Between pose factor creation
|
|
|
|
%% Add IMU factors
|
|
if options.includeIMUFactors == 1
|
|
% Update keys
|
|
currentVelKey = symbol('v', i); % not used if includeIMUFactors is false
|
|
currentBiasKey = symbol('b', i); % not used if includeIMUFactors is false
|
|
|
|
if options.imuFactorType == 1
|
|
use2ndOrderIntegration = true;
|
|
% Initialize preintegration
|
|
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements(...
|
|
metadata.imu.zeroBias, ...
|
|
metadata.imu.AccelerometerSigma.^2 * eye(3), ...
|
|
metadata.imu.GyroscopeSigma.^2 * eye(3), ...
|
|
metadata.imu.IntegrationSigma.^2 * eye(3), ...
|
|
use2ndOrderIntegration);
|
|
% Generate IMU measurements with noise
|
|
for j=1:length(measurements(i).imu) % all measurements to preintegrate
|
|
accelNoise = (measurementNoise.imu.accelNoiseVector .* randn(3,1));
|
|
imuAccel = measurements(i).imu(j).accel ...
|
|
+ accelNoise ... % added noise
|
|
+ metadata.imu.accelConstantBiasVector; % constant bias
|
|
|
|
gyroNoise = (measurementNoise.imu.gyroNoiseVector .* randn(3,1));
|
|
imuGyro = measurements(i).imu(j).gyro ...
|
|
+ gyroNoise ... % added noise
|
|
+ metadata.imu.gyroConstantBiasVector; % constant bias
|
|
|
|
% Used for debugging
|
|
%fprintf(' A: (meas)[%f %f %f] + (noise)[%f %f %f] + (bias)[%f %f %f] = [%f %f %f]\n', ...
|
|
% measurements(i).imu(j).accel(1), measurements(i).imu(j).accel(2), measurements(i).imu(j).accel(3), ...
|
|
% accelNoise(1), accelNoise(2), accelNoise(3), ...
|
|
% metadata.imu.accelConstantBiasVector(1), metadata.imu.accelConstantBiasVector(2), metadata.imu.accelConstantBiasVector(3), ...
|
|
% imuAccel(1), imuAccel(2), imuAccel(3));
|
|
%fprintf(' G: (meas)[%f %f %f] + (noise)[%f %f %f] + (bias)[%f %f %f] = [%f %f %f]\n', ...
|
|
% measurements(i).imu(j).gyro(1), measurements(i).imu(j).gyro(2), measurements(i).imu(j).gyro(3), ...
|
|
% gyroNoise(1), gyroNoise(2), gyroNoise(3), ...
|
|
% metadata.imu.gyroConstantBiasVector(1), metadata.imu.gyroConstantBiasVector(2), metadata.imu.gyroConstantBiasVector(3), ...
|
|
% imuGyro(1), imuGyro(2), imuGyro(3));
|
|
|
|
% Preintegrate
|
|
imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements(i).imu(j).deltaT);
|
|
end
|
|
%imuMeasurement.print('imuMeasurement');
|
|
|
|
% Add Imu factor
|
|
graph.add(ImuFactor(currentPoseKey-1, currentVelKey-1, currentPoseKey, currentVelKey, ...
|
|
currentBiasKey-1, imuMeasurement, metadata.imu.g, metadata.imu.omegaCoriolis));
|
|
% Add between factor on biases
|
|
graph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, metadata.imu.zeroBias, ...
|
|
noiseModels.noiseBiasBetween));
|
|
end
|
|
|
|
if options.imuFactorType == 2
|
|
use2ndOrderIntegration = true;
|
|
% Initialize preintegration
|
|
imuMeasurement = gtsam.CombinedImuFactorPreintegratedMeasurements(...
|
|
metadata.imu.zeroBias, ...
|
|
metadata.imu.AccelerometerSigma.^2 * eye(3), ...
|
|
metadata.imu.GyroscopeSigma.^2 * eye(3), ...
|
|
metadata.imu.IntegrationSigma.^2 * eye(3), ...
|
|
metadata.imu.BiasAccelerometerSigma.^2 * eye(3), ... % how bias changes over time
|
|
metadata.imu.BiasGyroscopeSigma.^2 * eye(3), ... % how bias changes over time
|
|
diag(metadata.imu.BiasAccOmegaInit.^2), ... % prior on bias
|
|
use2ndOrderIntegration);
|
|
% Generate IMU measurements with noise
|
|
for j=1:length(measurements(i).imu) % all measurements to preintegrate
|
|
imuAccel = measurements(i).imu(j).accel ...
|
|
+ (measurementNoise.imu.accelNoiseVector .* randn(3,1))... % added noise
|
|
+ metadata.imu.accelConstantBiasVector; % constant bias
|
|
imuGyro = measurements(i).imu(j).gyro ...
|
|
+ (measurementNoise.imu.gyroNoiseVector .* randn(3,1))... % added noise
|
|
+ metadata.imu.gyroConstantBiasVector; % constant bias
|
|
|
|
% Preintegrate
|
|
imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements(i).imu(j).deltaT);
|
|
end
|
|
|
|
% Add Imu factor
|
|
graph.add(CombinedImuFactor( ...
|
|
currentPoseKey-1, currentVelKey-1, ...
|
|
currentPoseKey, currentVelKey, ...
|
|
currentBiasKey-1, currentBiasKey, ...
|
|
imuMeasurement, ...
|
|
metadata.imu.g, metadata.imu.omegaCoriolis));
|
|
end
|
|
|
|
end % end of IMU factor creation
|
|
|
|
%% Build Camera Factors
|
|
if options.includeCameraFactors == 1
|
|
for j = 1:length(measurements(i).landmarks)
|
|
cameraMeasurmentNoise = measurementNoise.cameraNoiseVector .* randn(2,1);
|
|
cameraPixelMeasurement = measurements(i).landmarks(j);
|
|
% Only add the measurement if it is in the image frame (based on calibration)
|
|
if(cameraPixelMeasurement(1) > 0 && cameraPixelMeasurement(2) > 0 ...
|
|
&& cameraPixelMeasurement(1) < 2*metadata.camera.calibration.px ...
|
|
&& cameraPixelMeasurement(2) < 2*metadata.camera.calibration.py)
|
|
cameraPixelMeasurement = cameraPixelMeasurement + cameraMeasurmentNoise;
|
|
SmartProjectionFactors(j).add( ...
|
|
Point2(cameraPixelMeasurement), ...
|
|
currentPoseKey, noiseModels.noiseCamera, ...
|
|
metadata.camera.calibration);
|
|
projectionFactorSeenBy(j) = projectionFactorSeenBy(j)+1;
|
|
end
|
|
end
|
|
end % end of Camera factor creation
|
|
|
|
%% Add GPS factors
|
|
if options.includeGPSFactors == 1 && i >= options.gpsStartPose
|
|
gpsPosition = measurements(i).gpsPositionVector ...
|
|
+ measurementNoise.gpsNoiseVector .* randn(3,1);
|
|
graph.add(PriorFactorPose3(currentPoseKey, ...
|
|
Pose3(currentPose.rotation, Point3(gpsPosition)), ...
|
|
noiseModels.noiseGPS));
|
|
end % end of GPS factor creation
|
|
|
|
end % end of else (i=0)
|
|
|
|
end % end of for over trajectory
|
|
|
|
%% Add Camera Factors to the graph
|
|
% Only factors for landmarks that have been viewed at least once are added
|
|
% to the graph
|
|
%[find(projectionFactorSeenBy ~= 0) projectionFactorSeenBy(find(projectionFactorSeenBy ~= 0))]
|
|
if options.includeCameraFactors == 1
|
|
for j = 1:options.numberOfLandmarks
|
|
if projectionFactorSeenBy(j) > 0
|
|
graph.add(SmartProjectionFactors(j));
|
|
end
|
|
end
|
|
end
|
|
|
|
end % end of function
|
|
|