gtsam/matlab/unstable_examples/+imuSimulator/covarianceAnalysisCreateFac...

200 lines
9.1 KiB
Matlab

function [ graph projectionFactorSeenBy] = covarianceAnalysisCreateFactorGraph( measurements, values, noiseModels, measurementNoise, options, metadata)
% Create a factor graph based on provided measurements, values, and noises.
% Used for covariance analysis scripts.
% 'options' contains fields for including various factor types.
% 'metadata' is a storage variable for miscellaneous factor-specific values
% Authors: Luca Carlone, David Jensen
% Date: 2014/04/16
import gtsam.*;
graph = NonlinearFactorGraph;
% Iterate through the trajectory
for i=0:length(measurements)
% Get the current pose
currentPoseKey = symbol('x', i);
currentPose = values.atPose3(currentPoseKey);
if i==0
%% first time step, add priors
% Pose prior (poses used for all factors)
noisyInitialPoseVector = Pose3.Logmap(currentPose) + measurementNoise.poseNoiseVector .* randn(6,1);
initialPose = Pose3.Expmap(noisyInitialPoseVector);
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noiseModels.noisePose));
% IMU velocity and bias priors
if options.includeIMUFactors == 1
currentVelKey = symbol('v', 0);
currentVel = values.atPoint3(currentVelKey);
graph.add(PriorFactorVector(currentVelKey, currentVel, noiseModels.noiseVel));
currentBiasKey = symbol('b', 0);
currentBias = values.atPoint3(currentBiasKey);
graph.add(PriorFactorConstantBias(currentBiasKey, currentBias, noiseModels.noisePriorBias));
end
%% Create a SmartProjectionFactor for each landmark
projectionFactorSeenBy = [];
if options.includeCameraFactors == 1
for j=1:options.numberOfLandmarks
SmartProjectionFactors(j) = SmartProjectionPoseFactorCal3_S2(0.01);
% Use constructor with default values, but express the pose of the
% camera as a 90 degree rotation about the X axis
% SmartProjectionFactors(j) = SmartProjectionPoseFactorCal3_S2( ...
% 1, ... % rankTol
% -1, ... % linThreshold
% false, ... % manageDegeneracy
% false, ... % enableEPI
% metadata.camera.bodyPoseCamera); % Pose of camera in body frame
end
projectionFactorSeenBy = zeros(options.numberOfLandmarks,1);
end
else
%% Add Between factors
if options.includeBetweenFactors == 1
prevPoseKey = symbol('x', i-1);
% Create the noisy pose estimate
deltaPose = Pose3.Expmap(measurements(i).deltaVector ...
+ (measurementNoise.poseNoiseVector .* randn(6,1))); % added noise
% Add the between factor to the graph
graph.add(BetweenFactorPose3(prevPoseKey, currentPoseKey, deltaPose, noiseModels.noisePose));
end % end of Between pose factor creation
%% Add IMU factors
if options.includeIMUFactors == 1
% Update keys
currentVelKey = symbol('v', i); % not used if includeIMUFactors is false
currentBiasKey = symbol('b', i); % not used if includeIMUFactors is false
if options.imuFactorType == 1
use2ndOrderIntegration = true;
% Initialize preintegration
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements(...
metadata.imu.zeroBias, ...
metadata.imu.AccelerometerSigma.^2 * eye(3), ...
metadata.imu.GyroscopeSigma.^2 * eye(3), ...
metadata.imu.IntegrationSigma.^2 * eye(3), ...
use2ndOrderIntegration);
% Generate IMU measurements with noise
for j=1:length(measurements(i).imu) % all measurements to preintegrate
accelNoise = (measurementNoise.imu.accelNoiseVector .* randn(3,1));
imuAccel = measurements(i).imu(j).accel ...
+ accelNoise ... % added noise
+ metadata.imu.accelConstantBiasVector; % constant bias
gyroNoise = (measurementNoise.imu.gyroNoiseVector .* randn(3,1));
imuGyro = measurements(i).imu(j).gyro ...
+ gyroNoise ... % added noise
+ metadata.imu.gyroConstantBiasVector; % constant bias
% Used for debugging
%fprintf(' A: (meas)[%f %f %f] + (noise)[%f %f %f] + (bias)[%f %f %f] = [%f %f %f]\n', ...
% measurements(i).imu(j).accel(1), measurements(i).imu(j).accel(2), measurements(i).imu(j).accel(3), ...
% accelNoise(1), accelNoise(2), accelNoise(3), ...
% metadata.imu.accelConstantBiasVector(1), metadata.imu.accelConstantBiasVector(2), metadata.imu.accelConstantBiasVector(3), ...
% imuAccel(1), imuAccel(2), imuAccel(3));
%fprintf(' G: (meas)[%f %f %f] + (noise)[%f %f %f] + (bias)[%f %f %f] = [%f %f %f]\n', ...
% measurements(i).imu(j).gyro(1), measurements(i).imu(j).gyro(2), measurements(i).imu(j).gyro(3), ...
% gyroNoise(1), gyroNoise(2), gyroNoise(3), ...
% metadata.imu.gyroConstantBiasVector(1), metadata.imu.gyroConstantBiasVector(2), metadata.imu.gyroConstantBiasVector(3), ...
% imuGyro(1), imuGyro(2), imuGyro(3));
% Preintegrate
imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements(i).imu(j).deltaT);
end
%imuMeasurement.print('imuMeasurement');
% Add Imu factor
graph.add(ImuFactor(currentPoseKey-1, currentVelKey-1, currentPoseKey, currentVelKey, ...
currentBiasKey-1, imuMeasurement, metadata.imu.g, metadata.imu.omegaCoriolis));
% Add between factor on biases
graph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, metadata.imu.zeroBias, ...
noiseModels.noiseBiasBetween));
end
if options.imuFactorType == 2
use2ndOrderIntegration = true;
% Initialize preintegration
imuMeasurement = gtsam.CombinedImuFactorPreintegratedMeasurements(...
metadata.imu.zeroBias, ...
metadata.imu.AccelerometerSigma.^2 * eye(3), ...
metadata.imu.GyroscopeSigma.^2 * eye(3), ...
metadata.imu.IntegrationSigma.^2 * eye(3), ...
metadata.imu.BiasAccelerometerSigma.^2 * eye(3), ... % how bias changes over time
metadata.imu.BiasGyroscopeSigma.^2 * eye(3), ... % how bias changes over time
diag(metadata.imu.BiasAccOmegaInit.^2), ... % prior on bias
use2ndOrderIntegration);
% Generate IMU measurements with noise
for j=1:length(measurements(i).imu) % all measurements to preintegrate
imuAccel = measurements(i).imu(j).accel ...
+ (measurementNoise.imu.accelNoiseVector .* randn(3,1))... % added noise
+ metadata.imu.accelConstantBiasVector; % constant bias
imuGyro = measurements(i).imu(j).gyro ...
+ (measurementNoise.imu.gyroNoiseVector .* randn(3,1))... % added noise
+ metadata.imu.gyroConstantBiasVector; % constant bias
% Preintegrate
imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements(i).imu(j).deltaT);
end
% Add Imu factor
graph.add(CombinedImuFactor( ...
currentPoseKey-1, currentVelKey-1, ...
currentPoseKey, currentVelKey, ...
currentBiasKey-1, currentBiasKey, ...
imuMeasurement, ...
metadata.imu.g, metadata.imu.omegaCoriolis));
end
end % end of IMU factor creation
%% Build Camera Factors
if options.includeCameraFactors == 1
for j = 1:length(measurements(i).landmarks)
cameraMeasurmentNoise = measurementNoise.cameraNoiseVector .* randn(2,1);
cameraPixelMeasurement = measurements(i).landmarks(j);
% Only add the measurement if it is in the image frame (based on calibration)
if(cameraPixelMeasurement(1) > 0 && cameraPixelMeasurement(2) > 0 ...
&& cameraPixelMeasurement(1) < 2*metadata.camera.calibration.px ...
&& cameraPixelMeasurement(2) < 2*metadata.camera.calibration.py)
cameraPixelMeasurement = cameraPixelMeasurement + cameraMeasurmentNoise;
SmartProjectionFactors(j).add( ...
Point2(cameraPixelMeasurement), ...
currentPoseKey, noiseModels.noiseCamera, ...
metadata.camera.calibration);
projectionFactorSeenBy(j) = projectionFactorSeenBy(j)+1;
end
end
end % end of Camera factor creation
%% Add GPS factors
if options.includeGPSFactors == 1 && i >= options.gpsStartPose
gpsPosition = measurements(i).gpsPositionVector ...
+ measurementNoise.gpsNoiseVector .* randn(3,1);
graph.add(PriorFactorPose3(currentPoseKey, ...
Pose3(currentPose.rotation, Point3(gpsPosition)), ...
noiseModels.noiseGPS));
end % end of GPS factor creation
end % end of else (i=0)
end % end of for over trajectory
%% Add Camera Factors to the graph
% Only factors for landmarks that have been viewed at least once are added
% to the graph
%[find(projectionFactorSeenBy ~= 0) projectionFactorSeenBy(find(projectionFactorSeenBy ~= 0))]
if options.includeCameraFactors == 1
for j = 1:options.numberOfLandmarks
if projectionFactorSeenBy(j) > 0
graph.add(SmartProjectionFactors(j));
end
end
end
end % end of function