gtsam/gtsam/geometry/SO3.cpp

206 lines
6.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SO3.cpp
* @brief 3*3 matrix representation of SO(3)
* @author Frank Dellaert
* @author Luca Carlone
* @author Duy Nguyen Ta
* @date December 2014
*/
#include <gtsam/geometry/SO3.h>
#include <gtsam/base/concepts.h>
#include <cmath>
#include <limits>
#include <iostream>
namespace gtsam {
namespace so3 {
void ExpmapFunctor::init(bool nearZeroApprox) {
nearZero = nearZeroApprox || (theta2 <= std::numeric_limits<double>::epsilon());
if (!nearZero) {
sin_theta = std::sin(theta);
const double s2 = std::sin(theta / 2.0);
one_minus_cos = 2.0 * s2 * s2; // numerically better than [1 - cos(theta)]
}
}
ExpmapFunctor::ExpmapFunctor(const Vector3& omega, bool nearZeroApprox)
: theta2(omega.dot(omega)), theta(std::sqrt(theta2)) {
const double wx = omega.x(), wy = omega.y(), wz = omega.z();
W << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0;
init(nearZeroApprox);
if (!nearZero) {
K = W / theta;
KK = K * K;
}
}
ExpmapFunctor::ExpmapFunctor(const Vector3& axis, double angle, bool nearZeroApprox)
: theta2(angle * angle), theta(angle) {
const double ax = axis.x(), ay = axis.y(), az = axis.z();
K << 0.0, -az, +ay, +az, 0.0, -ax, -ay, +ax, 0.0;
W = K * angle;
init(nearZeroApprox);
if (!nearZero) {
KK = K * K;
}
}
SO3 ExpmapFunctor::expmap() const {
if (nearZero)
return I_3x3 + W;
else
return I_3x3 + sin_theta * K + one_minus_cos * KK;
}
DexpFunctor::DexpFunctor(const Vector3& omega, bool nearZeroApprox)
: ExpmapFunctor(omega, nearZeroApprox), omega(omega) {
if (nearZero)
dexp_ = I_3x3 - 0.5 * W;
else {
a = one_minus_cos / theta;
b = 1.0 - sin_theta / theta;
dexp_ = I_3x3 - a * K + b * KK;
}
}
Vector3 DexpFunctor::applyDexp(const Vector3& v, OptionalJacobian<3, 3> H1,
OptionalJacobian<3, 3> H2) const {
if (H1) {
if (nearZero) {
*H1 = 0.5 * skewSymmetric(v);
} else {
// TODO(frank): Iserles hints that there should be a form I + c*K + d*KK
const Vector3 Kv = K * v;
const double Da = (sin_theta - 2.0 * a) / theta2;
const double Db = (one_minus_cos - 3.0 * b) / theta2;
*H1 = (Db * K - Da * I_3x3) * Kv * omega.transpose() -
skewSymmetric(Kv * b / theta) +
(a * I_3x3 - b * K) * skewSymmetric(v / theta);
}
}
if (H2) *H2 = dexp_;
return dexp_ * v;
}
Vector3 DexpFunctor::applyInvDexp(const Vector3& v, OptionalJacobian<3, 3> H1,
OptionalJacobian<3, 3> H2) const {
const Matrix3 invDexp = dexp_.inverse();
const Vector3 c = invDexp * v;
if (H1) {
Matrix3 D_dexpv_omega;
applyDexp(c, D_dexpv_omega); // get derivative H of forward mapping
*H1 = -invDexp* D_dexpv_omega;
}
if (H2) *H2 = invDexp;
return c;
}
} // namespace so3
/* ************************************************************************* */
SO3 SO3::AxisAngle(const Vector3& axis, double theta) {
return so3::ExpmapFunctor(axis, theta).expmap();
}
/* ************************************************************************* */
void SO3::print(const std::string& s) const {
std::cout << s << *this << std::endl;
}
/* ************************************************************************* */
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H) {
if (H) {
so3::DexpFunctor impl(omega);
*H = impl.dexp();
return impl.expmap();
} else
return so3::ExpmapFunctor(omega).expmap();
}
Matrix3 SO3::ExpmapDerivative(const Vector3& omega) {
return so3::DexpFunctor(omega).dexp();
}
/* ************************************************************************* */
Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
using std::sqrt;
using std::sin;
// note switch to base 1
const double& R11 = R(0, 0), R12 = R(0, 1), R13 = R(0, 2);
const double& R21 = R(1, 0), R22 = R(1, 1), R23 = R(1, 2);
const double& R31 = R(2, 0), R32 = R(2, 1), R33 = R(2, 2);
// Get trace(R)
const double tr = R.trace();
Vector3 omega;
// when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc.
// we do something special
if (std::abs(tr + 1.0) < 1e-10) {
if (std::abs(R33 + 1.0) > 1e-10)
omega = (M_PI / sqrt(2.0 + 2.0 * R33)) * Vector3(R13, R23, 1.0 + R33);
else if (std::abs(R22 + 1.0) > 1e-10)
omega = (M_PI / sqrt(2.0 + 2.0 * R22)) * Vector3(R12, 1.0 + R22, R32);
else
// if(std::abs(R.r1_.x()+1.0) > 1e-10) This is implicit
omega = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31);
} else {
double magnitude;
const double tr_3 = tr - 3.0; // always negative
if (tr_3 < -1e-7) {
double theta = acos((tr - 1.0) / 2.0);
magnitude = theta / (2.0 * sin(theta));
} else {
// when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0)
// use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2)
magnitude = 0.5 - tr_3 * tr_3 / 12.0;
}
omega = magnitude * Vector3(R32 - R23, R13 - R31, R21 - R12);
}
if(H) *H = LogmapDerivative(omega);
return omega;
}
/* ************************************************************************* */
Matrix3 SO3::LogmapDerivative(const Vector3& omega) {
using std::cos;
using std::sin;
double theta2 = omega.dot(omega);
if (theta2 <= std::numeric_limits<double>::epsilon()) return I_3x3;
double theta = std::sqrt(theta2); // rotation angle
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* logmap( Rhat * expmap(omega) ) \approx logmap( Rhat ) + Jrinv * omega
* where Jrinv = LogmapDerivative(omega);
* This maps a perturbation on the manifold (expmap(omega))
* to a perturbation in the tangent space (Jrinv * omega)
*/
const Matrix3 W = skewSymmetric(omega); // element of Lie algebra so(3): W = omega^
return I_3x3 + 0.5 * W +
(1 / (theta * theta) - (1 + cos(theta)) / (2 * theta * sin(theta))) *
W * W;
}
/* ************************************************************************* */
} // end namespace gtsam