gtsam/gtsam/linear/GaussianBayesTree.cpp

135 lines
4.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianBayesTree.cpp
* @brief Gaussian Bayes Tree, the result of eliminating a GaussianJunctionTree
* @brief GaussianBayesTree
* @author Frank Dellaert
* @author Richard Roberts
*/
#include <gtsam/base/treeTraversal-inst.h>
#include <gtsam/inference/BayesTree-inst.h>
#include <gtsam/inference/BayesTreeCliqueBase-inst.h>
#include <gtsam/linear/linearAlgorithms-inst.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/VectorValues.h>
namespace gtsam {
// Instantiate base class
template class BayesTreeCliqueBase<GaussianBayesTreeClique, GaussianFactorGraph>;
template class BayesTree<GaussianBayesTreeClique>;
/* ************************************************************************ */
namespace internal {
/**
* @brief Struct to help with traversing the Bayes Tree
* for log-determinant computation.
* Records the data which is passed to the child nodes in pre-order visit.
*/
struct LogDeterminantData {
// Use pointer so we can get the full result after tree traversal
double* logDet;
LogDeterminantData(double* logDet)
: logDet(logDet) {}
};
/* ************************************************************************ */
LogDeterminantData& logDeterminant(
const GaussianBayesTreeClique::shared_ptr& clique,
LogDeterminantData& parentSum) {
auto cg = clique->conditional();
double logDet;
if (cg->get_model()) {
Vector diag = cg->R().diagonal();
cg->get_model()->whitenInPlace(diag);
logDet = diag.unaryExpr([](double x) { return log(x); }).sum();
} else {
logDet =
cg->R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
}
// Add the current clique's log-determinant to the overall sum
(*parentSum.logDet) += logDet;
return parentSum;
}
} // namespace internal
/* ************************************************************************* */
bool GaussianBayesTree::equals(const This& other, double tol) const
{
return Base::equals(other, tol);
}
/* ************************************************************************* */
VectorValues GaussianBayesTree::optimize() const
{
return internal::linearAlgorithms::optimizeBayesTree(*this);
}
/* ************************************************************************* */
VectorValues GaussianBayesTree::optimizeGradientSearch() const
{
gttic(GaussianBayesTree_optimizeGradientSearch);
return GaussianFactorGraph(*this).optimizeGradientSearch();
}
/* ************************************************************************* */
VectorValues GaussianBayesTree::gradient(const VectorValues& x0) const {
return GaussianFactorGraph(*this).gradient(x0);
}
/* ************************************************************************* */
VectorValues GaussianBayesTree::gradientAtZero() const {
return GaussianFactorGraph(*this).gradientAtZero();
}
/* ************************************************************************* */
double GaussianBayesTree::error(const VectorValues& x) const {
return GaussianFactorGraph(*this).error(x);
}
/* ************************************************************************* */
double GaussianBayesTree::logDeterminant() const
{
if(this->roots_.empty()) {
return 0.0;
} else {
double sum = 0.0;
// Store the log-determinant in this struct.
internal::LogDeterminantData rootData(&sum);
// No need to do anything for post-operation.
treeTraversal::no_op visitorPost;
// Limits OpenMP threads if we're mixing TBB and OpenMP
TbbOpenMPMixedScope threadLimiter;
// Traverse the GaussianBayesTree depth first and call logDeterminant on each node.
treeTraversal::DepthFirstForestParallel(*this, rootData, internal::logDeterminant, visitorPost);
return sum;
}
}
/* ************************************************************************* */
double GaussianBayesTree::determinant() const
{
return exp(logDeterminant());
}
/* ************************************************************************* */
Matrix GaussianBayesTree::marginalCovariance(Key key) const
{
return marginalFactor(key)->information().inverse();
}
} // \namespace gtsam