gtsam/gtsam/base/Vector.h

310 lines
9.0 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Vector.h
* @brief typedef and functions to augment Eigen's VectorXd
* @author Kai Ni
* @author Frank Dellaert
* @author Alex Hagiopol
* @author Varun Agrawal
*/
// \callgraph
#pragma once
#ifndef MKL_BLAS
#define MKL_BLAS MKL_DOMAIN_BLAS
#endif
#include <gtsam/global_includes.h>
#include <Eigen/Core>
#include <iosfwd>
#include <list>
namespace gtsam {
// Vector is just a typedef of the Eigen dynamic vector type
// Typedef arbitary length vector
typedef Eigen::VectorXd Vector;
// Commonly used fixed size vectors
typedef Eigen::Matrix<double, 1, 1> Vector1;
typedef Eigen::Vector2d Vector2;
typedef Eigen::Vector3d Vector3;
static const Eigen::MatrixBase<Vector2>::ConstantReturnType Z_2x1 = Vector2::Zero();
static const Eigen::MatrixBase<Vector3>::ConstantReturnType Z_3x1 = Vector3::Zero();
// Create handy typedefs and constants for vectors with N>3
// VectorN and Z_Nx1, for N=1..9
#define GTSAM_MAKE_VECTOR_DEFS(N) \
using Vector##N = Eigen::Matrix<double, N, 1>; \
static const Eigen::MatrixBase<Vector##N>::ConstantReturnType Z_##N##x1 = Vector##N::Zero();
GTSAM_MAKE_VECTOR_DEFS(4)
GTSAM_MAKE_VECTOR_DEFS(5)
GTSAM_MAKE_VECTOR_DEFS(6)
GTSAM_MAKE_VECTOR_DEFS(7)
GTSAM_MAKE_VECTOR_DEFS(8)
GTSAM_MAKE_VECTOR_DEFS(9)
GTSAM_MAKE_VECTOR_DEFS(10)
GTSAM_MAKE_VECTOR_DEFS(11)
GTSAM_MAKE_VECTOR_DEFS(12)
typedef Eigen::VectorBlock<Vector> SubVector;
typedef Eigen::VectorBlock<const Vector> ConstSubVector;
/**
* Ensure we are not including a different version of Eigen in user code than
* while compiling gtsam, since it can lead to hard-to-understand runtime
* crashes.
*/
#if defined(GTSAM_EIGEN_VERSION_WORLD)
static_assert(
GTSAM_EIGEN_VERSION_WORLD==EIGEN_WORLD_VERSION &&
GTSAM_EIGEN_VERSION_MAJOR==EIGEN_MAJOR_VERSION,
"Error: GTSAM was built against a different version of Eigen");
#endif
/**
* Numerically stable function for comparing if floating point values are equal
* within epsilon tolerance.
* Used for vector and matrix comparison with C++11 compatible functions.
*
* If either value is NaN or Inf, we check for both values to be NaN or Inf
* respectively for the comparison to be true.
* If one is NaN/Inf and the other is not, returns false.
*
* @param check_relative_also is a flag which toggles additional checking for
* relative error. This means that if either the absolute error or the relative
* error is within the tolerance, the result will be true.
* By default, the flag is true.
*
* Return true if two numbers are close wrt tol.
*/
GTSAM_EXPORT bool fpEqual(double a, double b, double tol,
bool check_relative_also = true);
/**
* print without optional string, must specify cout yourself
*/
GTSAM_EXPORT void print(const Vector& v, const std::string& s, std::ostream& stream);
/**
* print with optional string to cout
*/
GTSAM_EXPORT void print(const Vector& v, const std::string& s = "");
/**
* save a vector to file, which can be loaded by matlab
*/
GTSAM_EXPORT void save(const Vector& A, const std::string &s, const std::string& filename);
/**
* operator==()
*/
GTSAM_EXPORT bool operator==(const Vector& vec1,const Vector& vec2);
/**
* Greater than or equal to operation
* returns true if all elements in v1
* are greater than corresponding elements in v2
*/
GTSAM_EXPORT bool greaterThanOrEqual(const Vector& v1, const Vector& v2);
/**
* VecA == VecB up to tolerance
*/
GTSAM_EXPORT bool equal_with_abs_tol(const Vector& vec1, const Vector& vec2, double tol=1e-9);
GTSAM_EXPORT bool equal_with_abs_tol(const SubVector& vec1, const SubVector& vec2, double tol=1e-9);
/**
* Override of equal in Lie.h
*/
inline bool equal(const Vector& vec1, const Vector& vec2, double tol) {
return equal_with_abs_tol(vec1, vec2, tol);
}
/**
* Override of equal in Lie.h
*/
inline bool equal(const Vector& vec1, const Vector& vec2) {
return equal_with_abs_tol(vec1, vec2);
}
/**
* Same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool assert_equal(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* Not the same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool assert_inequal(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* Same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool assert_equal(const SubVector& vec1, const SubVector& vec2, double tol=1e-9);
GTSAM_EXPORT bool assert_equal(const ConstSubVector& vec1, const ConstSubVector& vec2, double tol=1e-9);
/**
* check whether two vectors are linearly dependent
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool linear_dependent(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* elementwise division, but 0/0 = 0, not inf
* @param a first vector
* @param b second vector
* @return vector [a(i)/b(i)]
*/
GTSAM_EXPORT Vector ediv_(const Vector &a, const Vector &b);
/**
* Dot product
*/
template<class V1, class V2>
inline double dot(const V1 &a, const V2& b) {
assert (b.size()==a.size());
return a.dot(b);
}
/** compatibility version for ublas' inner_prod() */
template<class V1, class V2>
inline double inner_prod(const V1 &a, const V2& b) {
assert (b.size()==a.size());
return a.dot(b);
}
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V42
/**
* BLAS Level 1 scal: x <- alpha*x
* @deprecated: use operators instead
*/
inline void GTSAM_DEPRECATED scal(double alpha, Vector& x) { x *= alpha; }
/**
* BLAS Level 1 axpy: y <- alpha*x + y
* @deprecated: use operators instead
*/
template<class V1, class V2>
inline void GTSAM_DEPRECATED axpy(double alpha, const V1& x, V2& y) {
assert (y.size()==x.size());
y += alpha * x;
}
inline void axpy(double alpha, const Vector& x, SubVector y) {
assert (y.size()==x.size());
y += alpha * x;
}
#endif
/**
* house(x,j) computes HouseHolder vector v and scaling factor beta
* from x, such that the corresponding Householder reflection zeroes out
* all but x.(j), j is base 0. Golub & Van Loan p 210.
*/
GTSAM_EXPORT std::pair<double,Vector> house(const Vector &x);
/** beta = house(x) computes the HouseHolder vector in place */
GTSAM_EXPORT double houseInPlace(Vector &x);
/**
* Weighted Householder solution vector,
* a.k.a., the pseudoinverse of the column
* NOTE: if any sigmas are zero (indicating a constraint)
* the pseudoinverse will be a selection vector, and the
* variance will be zero
* @param v is the first column of the matrix to solve
* @param weights is a vector of weights/precisions where w=1/(s*s)
* @return a pair of the pseudoinverse of v and the associated precision/weight
*/
GTSAM_EXPORT std::pair<Vector, double>
weightedPseudoinverse(const Vector& v, const Vector& weights);
/*
* Fast version *no error checking* !
* Pass in initialized vector pseudo of size(weights) or will crash !
* @return the precision, pseudoinverse in third argument
*/
GTSAM_EXPORT double weightedPseudoinverse(const Vector& a, const Vector& weights, Vector& pseudo);
/**
* concatenate Vectors
*/
GTSAM_EXPORT Vector concatVectors(const std::list<Vector>& vs);
/**
* concatenate Vectors
*/
GTSAM_EXPORT Vector concatVectors(size_t nrVectors, ...);
} // namespace gtsam
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/split_free.hpp>
namespace boost {
namespace serialization {
// split version - copies into an STL vector for serialization
template<class Archive>
void save(Archive & ar, const gtsam::Vector & v, unsigned int /*version*/) {
const size_t size = v.size();
ar << BOOST_SERIALIZATION_NVP(size);
ar << make_nvp("data", make_array(v.data(), v.size()));
}
template<class Archive>
void load(Archive & ar, gtsam::Vector & v, unsigned int /*version*/) {
size_t size;
ar >> BOOST_SERIALIZATION_NVP(size);
v.resize(size);
ar >> make_nvp("data", make_array(v.data(), v.size()));
}
// split version - copies into an STL vector for serialization
template<class Archive, int D>
void save(Archive & ar, const Eigen::Matrix<double,D,1> & v, unsigned int /*version*/) {
ar << make_nvp("data", make_array(v.data(), v.RowsAtCompileTime));
}
template<class Archive, int D>
void load(Archive & ar, Eigen::Matrix<double,D,1> & v, unsigned int /*version*/) {
ar >> make_nvp("data", make_array(v.data(), v.RowsAtCompileTime));
}
} // namespace serialization
} // namespace boost
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector)
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector2)
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector3)
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector6)