gtsam/gtsam_unstable/dynamics/tests/testPoseRTV.cpp

236 lines
9.6 KiB
C++

/**
* @file testPoseRTV
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam_unstable/dynamics/PoseRTV.h>
using namespace gtsam;
GTSAM_CONCEPT_TESTABLE_INST(PoseRTV)
GTSAM_CONCEPT_LIE_INST(PoseRTV)
const double tol=1e-5;
Rot3 rot = Rot3::RzRyRx(0.1, 0.2, 0.3);
Point3 pt(1.0, 2.0, 3.0);
Velocity3 vel(0.4, 0.5, 0.6);
/* ************************************************************************* */
TEST( testPoseRTV, constructors ) {
PoseRTV state1(pt, rot, vel);
EXPECT(assert_equal(pt, state1.t(), tol));
EXPECT(assert_equal(rot, state1.R(), tol));
EXPECT(assert_equal(vel, state1.v(), tol));
EXPECT(assert_equal(Pose3(rot, pt), state1.pose(), tol));
PoseRTV state2;
EXPECT(assert_equal(Point3(), state2.t(), tol));
EXPECT(assert_equal(Rot3(), state2.R(), tol));
EXPECT(assert_equal(Velocity3(), state2.v(), tol));
EXPECT(assert_equal(Pose3(), state2.pose(), tol));
PoseRTV state3(Pose3(rot, pt), vel);
EXPECT(assert_equal(pt, state3.t(), tol));
EXPECT(assert_equal(rot, state3.R(), tol));
EXPECT(assert_equal(vel, state3.v(), tol));
EXPECT(assert_equal(Pose3(rot, pt), state3.pose(), tol));
PoseRTV state4(Pose3(rot, pt));
EXPECT(assert_equal(pt, state4.t(), tol));
EXPECT(assert_equal(rot, state4.R(), tol));
EXPECT(assert_equal(Velocity3(), state4.v(), tol));
EXPECT(assert_equal(Pose3(rot, pt), state4.pose(), tol));
Vector vec_init = (Vector(9) << 0.1, 0.2, 0.3, 1.0, 2.0, 3.0, 0.4, 0.5, 0.6).finished();
PoseRTV state5(vec_init);
EXPECT(assert_equal(pt, state5.t(), tol));
EXPECT(assert_equal(rot, state5.R(), tol));
EXPECT(assert_equal(vel, state5.v(), tol));
EXPECT(assert_equal(vec_init, state5.vector(), tol));
}
/* ************************************************************************* */
TEST( testPoseRTV, dim ) {
PoseRTV state1(pt, rot, vel);
EXPECT_LONGS_EQUAL(9, state1.dim());
EXPECT_LONGS_EQUAL(9, PoseRTV::Dim());
}
/* ************************************************************************* */
TEST( testPoseRTV, equals ) {
PoseRTV state1, state2(pt, rot, vel), state3(state2), state4(Pose3(rot, pt));
EXPECT(assert_equal(state1, state1, tol));
EXPECT(assert_equal(state2, state3, tol));
EXPECT(assert_equal(state3, state2, tol));
EXPECT(assert_inequal(state1, state2, tol));
EXPECT(assert_inequal(state2, state1, tol));
EXPECT(assert_inequal(state2, state4, tol));
}
/* ************************************************************************* */
TEST( testPoseRTV, Lie ) {
// origin and zero deltas
PoseRTV identity;
EXPECT(assert_equal(identity, (PoseRTV)identity.retract(zero(9)), tol));
EXPECT(assert_equal(zero(9), identity.localCoordinates(identity), tol));
PoseRTV state1(pt, rot, vel);
EXPECT(assert_equal(state1, (PoseRTV)state1.retract(zero(9)), tol));
EXPECT(assert_equal(zero(9), state1.localCoordinates(state1), tol));
Vector delta = (Vector(9) << 0.1, 0.1, 0.1, 0.2, 0.3, 0.4,-0.1,-0.2,-0.3).finished();
Rot3 rot2 = rot.retract(repeat(3, 0.1));
Point3 pt2 = pt + rot * Point3(0.2, 0.3, 0.4);
Velocity3 vel2 = vel + rot * Velocity3(-0.1,-0.2,-0.3);
PoseRTV state2(pt2, rot2, vel2);
EXPECT(assert_equal(state2, (PoseRTV)state1.retract(delta), 1e-1));
EXPECT(assert_equal(delta, state1.localCoordinates(state2), 1e-1));
EXPECT(assert_equal(delta, -state2.localCoordinates(state1), 1e-1));
}
/* ************************************************************************* */
TEST( testPoseRTV, dynamics_identities ) {
// general dynamics should produce the same measurements as the imuPrediction function
PoseRTV x0, x1, x2, x3, x4;
const double dt = 0.1;
Vector accel = Vector3(0.2, 0.0, 0.0), gyro = Vector3(0.0, 0.0, 0.2);
Vector imu01 = zero(6), imu12 = zero(6), imu23 = zero(6), imu34 = zero(6);
x1 = x0.generalDynamics(accel, gyro, dt);
x2 = x1.generalDynamics(accel, gyro, dt);
x3 = x2.generalDynamics(accel, gyro, dt);
x4 = x3.generalDynamics(accel, gyro, dt);
// EXPECT(assert_equal(imu01, x0.imuPrediction(x1, dt).first, tol));
// EXPECT(assert_equal(imu12, x1.imuPrediction(x2, dt).first, tol));
// EXPECT(assert_equal(imu23, x2.imuPrediction(x3, dt).first, tol));
// EXPECT(assert_equal(imu34, x3.imuPrediction(x4, dt).first, tol));
//
// EXPECT(assert_equal(x1.translation(), x0.imuPrediction(x1, dt).second, tol));
// EXPECT(assert_equal(x2.translation(), x1.imuPrediction(x2, dt).second, tol));
// EXPECT(assert_equal(x3.translation(), x2.imuPrediction(x3, dt).second, tol));
// EXPECT(assert_equal(x4.translation(), x3.imuPrediction(x4, dt).second, tol));
}
/* ************************************************************************* */
PoseRTV compose_proxy(const PoseRTV& A, const PoseRTV& B) { return A.compose(B); }
TEST( testPoseRTV, compose ) {
PoseRTV state1(pt, rot, vel), state2 = state1;
Matrix actH1, actH2;
state1.compose(state2, actH1, actH2);
Matrix numericH1 = numericalDerivative21(compose_proxy, state1, state2);
Matrix numericH2 = numericalDerivative22(compose_proxy, state1, state2);
EXPECT(assert_equal(numericH1, actH1, tol));
EXPECT(assert_equal(numericH2, actH2, tol));
}
/* ************************************************************************* */
PoseRTV between_proxy(const PoseRTV& A, const PoseRTV& B) { return A.between(B); }
TEST( testPoseRTV, between ) {
PoseRTV state1(pt, rot, vel), state2 = state1;
Matrix actH1, actH2;
state1.between(state2, actH1, actH2);
Matrix numericH1 = numericalDerivative21(between_proxy, state1, state2);
Matrix numericH2 = numericalDerivative22(between_proxy, state1, state2);
EXPECT(assert_equal(numericH1, actH1, tol));
EXPECT(assert_equal(numericH2, actH2, tol));
}
/* ************************************************************************* */
PoseRTV inverse_proxy(const PoseRTV& A) { return A.inverse(); }
TEST( testPoseRTV, inverse ) {
PoseRTV state1(pt, rot, vel);
Matrix actH1;
state1.inverse(actH1);
Matrix numericH1 = numericalDerivative11(inverse_proxy, state1);
EXPECT(assert_equal(numericH1, actH1, tol));
}
/* ************************************************************************* */
double range_proxy(const PoseRTV& A, const PoseRTV& B) { return A.range(B); }
TEST( testPoseRTV, range ) {
Point3 tA(1.0, 2.0, 3.0), tB(3.0, 2.0, 3.0);
PoseRTV rtvA(tA), rtvB(tB);
EXPECT_DOUBLES_EQUAL(0.0, rtvA.range(rtvA), tol);
EXPECT_DOUBLES_EQUAL(2.0, rtvA.range(rtvB), tol);
EXPECT_DOUBLES_EQUAL(2.0, rtvB.range(rtvA), tol);
Matrix actH1, actH2;
rtvA.range(rtvB, actH1, actH2);
Matrix numericH1 = numericalDerivative21(range_proxy, rtvA, rtvB);
Matrix numericH2 = numericalDerivative22(range_proxy, rtvA, rtvB);
EXPECT(assert_equal(numericH1, actH1, tol));
EXPECT(assert_equal(numericH2, actH2, tol));
}
/* ************************************************************************* */
PoseRTV transformed_from_proxy(const PoseRTV& a, const Pose3& trans) {
return a.transformed_from(trans);
}
TEST( testPoseRTV, transformed_from_1 ) {
Rot3 R = Rot3::Rodrigues(0.1, 0.2, 0.3);
Point3 T(1.0, 2.0, 3.0);
Velocity3 V(2.0, 3.0, 4.0);
PoseRTV start(R, T, V);
Pose3 transform(Rot3::yaw(M_PI_2), Point3(1.0, 2.0, 3.0));
Matrix actDTrans, actDGlobal;
PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans);
PoseRTV expected(transform.compose(start.pose()), transform.rotation().rotate(V));
EXPECT(assert_equal(expected, actual, tol));
Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails
Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size
EXPECT(assert_equal(numDGlobal, actDGlobal, tol));
EXPECT(assert_equal(numDTrans, actDTrans, tol)); // FIXME: still needs analytic derivative
}
/* ************************************************************************* */
TEST( testPoseRTV, transformed_from_2 ) {
Rot3 R;
Point3 T(1.0, 2.0, 3.0);
Velocity3 V(2.0, 3.0, 4.0);
PoseRTV start(R, T, V);
Pose3 transform(Rot3::yaw(M_PI_2), Point3(1.0, 2.0, 3.0));
Matrix actDTrans, actDGlobal;
PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans);
PoseRTV expected(transform.compose(start.pose()), transform.rotation().rotate(V));
EXPECT(assert_equal(expected, actual, tol));
Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails
Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size
EXPECT(assert_equal(numDGlobal, actDGlobal, tol));
EXPECT(assert_equal(numDTrans, actDTrans, tol)); // FIXME: still needs analytic derivative
}
/* ************************************************************************* */
TEST(testPoseRTV, RRTMbn) {
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(zero(3)), tol));
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(Rot3()), tol));
EXPECT(assert_equal(PoseRTV::RRTMbn(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMbn(Rot3::ypr(0.1, 0.2, 0.3)), tol));
}
/* ************************************************************************* */
TEST(testPoseRTV, RRTMnb) {
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(zero(3)), tol));
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(Rot3()), tol));
EXPECT(assert_equal(PoseRTV::RRTMnb(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMnb(Rot3::ypr(0.1, 0.2, 0.3)), tol));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */