195 lines
6.5 KiB
C++
195 lines
6.5 KiB
C++
/**
|
|
* @file testSubgraphConditioner.cpp
|
|
* @brief Unit tests for SubgraphPreconditioner
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/std/list.hpp>
|
|
using namespace boost::assign;
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include "numericalDerivative.h"
|
|
#include "Ordering.h"
|
|
#include "smallExample.h"
|
|
#include "SubgraphPreconditioner.h"
|
|
#include "iterative-inl.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, planarGraph )
|
|
{
|
|
// Check planar graph construction
|
|
GaussianFactorGraph A;
|
|
VectorConfig xtrue;
|
|
boost::tie(A, xtrue) = planarGraph(3);
|
|
LONGS_EQUAL(13,A.size());
|
|
LONGS_EQUAL(9,xtrue.size());
|
|
DOUBLES_EQUAL(0,A.error(xtrue),1e-9); // check zero error for xtrue
|
|
|
|
// Check canonical ordering
|
|
Ordering expected, ordering = planarOrdering(3);
|
|
expected += "x3003", "x2003", "x1003", "x3002", "x2002", "x1002", "x3001", "x2001", "x1001";
|
|
CHECK(assert_equal(expected,ordering));
|
|
|
|
// Check that xtrue is optimal
|
|
GaussianBayesNet R1 = A.eliminate(ordering);
|
|
VectorConfig actual = optimize(R1);
|
|
CHECK(assert_equal(xtrue,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, splitOffPlanarTree )
|
|
{
|
|
// Build a planar graph
|
|
GaussianFactorGraph A;
|
|
VectorConfig xtrue;
|
|
boost::tie(A, xtrue) = planarGraph(3);
|
|
|
|
// Get the spanning tree and constraints, and check their sizes
|
|
GaussianFactorGraph T, C;
|
|
boost::tie(T, C) = splitOffPlanarTree(3, A);
|
|
LONGS_EQUAL(9,T.size());
|
|
LONGS_EQUAL(4,C.size());
|
|
|
|
// Check that the tree can be solved to give the ground xtrue
|
|
Ordering ordering = planarOrdering(3);
|
|
GaussianBayesNet R1 = T.eliminate(ordering);
|
|
VectorConfig xbar = optimize(R1);
|
|
CHECK(assert_equal(xtrue,xbar));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, system )
|
|
{
|
|
// Build a planar graph
|
|
GaussianFactorGraph Ab;
|
|
VectorConfig xtrue;
|
|
size_t N = 3;
|
|
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
|
|
|
// Get the spanning tree and corresponding ordering
|
|
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
|
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
|
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
|
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
|
|
|
// Eliminate the spanning tree to build a prior
|
|
Ordering ordering = planarOrdering(N);
|
|
SubgraphPreconditioner::sharedBayesNet Rc1 = Ab1_.eliminate_(ordering); // R1*x-c1
|
|
SubgraphPreconditioner::sharedConfig xbar = optimize_(*Rc1); // xbar = inv(R1)*c1
|
|
|
|
// Create Subgraph-preconditioned system
|
|
SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbar);
|
|
|
|
// Create zero config
|
|
VectorConfig zeros = VectorConfig::zero(*xbar);
|
|
|
|
// Set up y0 as all zeros
|
|
VectorConfig y0 = zeros;
|
|
|
|
// y1 = perturbed y0
|
|
VectorConfig y1 = zeros;
|
|
y1["x2003"] = Vector_(2, 1.0, -1.0);
|
|
|
|
// Check corresponding x values
|
|
VectorConfig expected_x1 = xtrue, x1 = system.x(y1);
|
|
expected_x1["x2003"] = Vector_(2, 2.01, 2.99);
|
|
expected_x1["x3003"] = Vector_(2, 3.01, 2.99);
|
|
CHECK(assert_equal(xtrue, system.x(y0)));
|
|
CHECK(assert_equal(expected_x1,system.x(y1)));
|
|
|
|
// Check errors
|
|
DOUBLES_EQUAL(0,Ab.error(xtrue),1e-9);
|
|
DOUBLES_EQUAL(3,Ab.error(x1),1e-9);
|
|
DOUBLES_EQUAL(0,system.error(y0),1e-9);
|
|
DOUBLES_EQUAL(3,system.error(y1),1e-9);
|
|
|
|
// Test gradient in x
|
|
VectorConfig expected_gx0 = zeros;
|
|
VectorConfig expected_gx1 = zeros;
|
|
CHECK(assert_equal(expected_gx0,Ab.gradient(xtrue)));
|
|
expected_gx1["x1003"] = Vector_(2, -100., 100.);
|
|
expected_gx1["x2002"] = Vector_(2, -100., 100.);
|
|
expected_gx1["x2003"] = Vector_(2, 200., -200.);
|
|
expected_gx1["x3002"] = Vector_(2, -100., 100.);
|
|
expected_gx1["x3003"] = Vector_(2, 100., -100.);
|
|
CHECK(assert_equal(expected_gx1,Ab.gradient(x1)));
|
|
|
|
// Test gradient in y
|
|
VectorConfig expected_gy0 = zeros;
|
|
VectorConfig expected_gy1 = zeros;
|
|
expected_gy1["x1003"] = Vector_(2, 2., -2.);
|
|
expected_gy1["x2002"] = Vector_(2, -2., 2.);
|
|
expected_gy1["x2003"] = Vector_(2, 3., -3.);
|
|
expected_gy1["x3002"] = Vector_(2, -1., 1.);
|
|
expected_gy1["x3003"] = Vector_(2, 1., -1.);
|
|
CHECK(assert_equal(expected_gy0,system.gradient(y0)));
|
|
CHECK(assert_equal(expected_gy1,system.gradient(y1)));
|
|
|
|
// Check it numerically for good measure
|
|
// TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
|
|
// Vector numerical_g1 = numericalGradient<VectorConfig> (error, y1, 0.001);
|
|
// Vector expected_g1 = Vector_(18, 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
|
|
// 3., -3., 0., 0., -1., 1., 1., -1.);
|
|
// CHECK(assert_equal(expected_g1,numerical_g1));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, conjugateGradients )
|
|
{
|
|
// Build a planar graph
|
|
GaussianFactorGraph Ab;
|
|
VectorConfig xtrue;
|
|
size_t N = 3;
|
|
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
|
|
|
// Get the spanning tree and corresponding ordering
|
|
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
|
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
|
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
|
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
|
|
|
// Eliminate the spanning tree to build a prior
|
|
Ordering ordering = planarOrdering(N);
|
|
SubgraphPreconditioner::sharedBayesNet Rc1 = Ab1_.eliminate_(ordering); // R1*x-c1
|
|
SubgraphPreconditioner::sharedConfig xbar = optimize_(*Rc1); // xbar = inv(R1)*c1
|
|
|
|
// Create Subgraph-preconditioned system
|
|
SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbar);
|
|
|
|
// Create zero config y0 and perturbed config y1
|
|
VectorConfig y0 = VectorConfig::zero(*xbar);
|
|
|
|
VectorConfig y1 = y0;
|
|
y1["x2003"] = Vector_(2, 1.0, -1.0);
|
|
VectorConfig x1 = system.x(y1);
|
|
|
|
// Solve for the remaining constraints using PCG
|
|
bool verbose = false;
|
|
double epsilon = 1e-3;
|
|
size_t maxIterations = 100;
|
|
VectorConfig actual = gtsam::conjugateGradients<SubgraphPreconditioner,
|
|
VectorConfig, Errors>(system, y1, verbose, epsilon, epsilon, maxIterations);
|
|
CHECK(assert_equal(y0,actual));
|
|
|
|
// Compare with non preconditioned version:
|
|
VectorConfig actual2 = conjugateGradientDescent(Ab, x1, verbose, epsilon,
|
|
epsilon, maxIterations);
|
|
CHECK(assert_equal(xtrue,actual2,1e-4));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|