804 lines
22 KiB
C++
804 lines
22 KiB
C++
/**
|
|
* @file testGaussianFactor.cpp
|
|
* @brief Unit tests for Linear Factor
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <iostream>
|
|
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
#include <boost/assign/std/set.hpp>
|
|
#include <boost/assign/std/map.hpp> // for insert
|
|
using namespace boost::assign;
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include "Matrix.h"
|
|
#include "Ordering.h"
|
|
#include "GaussianConditional.h"
|
|
#include "smallExample.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
using namespace boost;
|
|
|
|
static SharedDiagonal
|
|
sigma0_1 = sharedSigma(2,0.1), sigma_02 = sharedSigma(2,0.2),
|
|
constraintModel = noiseModel::Constrained::All(2);
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, linearFactor )
|
|
{
|
|
Matrix I = eye(2);
|
|
Vector b = Vector_(2, 2.0, -1.0);
|
|
GaussianFactor expected("x1", -10*I,"x2", 10*I, b, noiseModel::Unit::Create(2));
|
|
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
|
|
// check if the two factors are the same
|
|
CHECK(assert_equal(expected,*lf));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, operators )
|
|
{
|
|
Matrix I = eye(2);
|
|
Vector b = Vector_(2,0.2,-0.1);
|
|
GaussianFactor lf("x1", -I, "x2", I, b, sigma0_1);
|
|
|
|
VectorConfig c;
|
|
c.insert("x1",Vector_(2,10.,20.));
|
|
c.insert("x2",Vector_(2,30.,60.));
|
|
|
|
// test A*x
|
|
Vector expectedE = Vector_(2,200.,400.), e = lf*c;
|
|
CHECK(assert_equal(expectedE,e));
|
|
|
|
// test A^e
|
|
VectorConfig expectedX;
|
|
expectedX.insert("x1",Vector_(2,-2000.,-4000.));
|
|
expectedX.insert("x2",Vector_(2, 2000., 4000.));
|
|
CHECK(assert_equal(expectedX,lf^e));
|
|
|
|
// test transposeMultiplyAdd
|
|
VectorConfig x;
|
|
x.insert("x1",Vector_(2, 1.,2.));
|
|
x.insert("x2",Vector_(2, 3.,4.));
|
|
VectorConfig expectedX2 = x + 0.1 * (lf^e);
|
|
lf.transposeMultiplyAdd(0.1,e,x);
|
|
CHECK(assert_equal(expectedX2,x));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, keys )
|
|
{
|
|
// get the factor "f2" from the small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
list<Symbol> expected;
|
|
expected.push_back("x1");
|
|
expected.push_back("x2");
|
|
CHECK(lf->keys() == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, dimensions )
|
|
{
|
|
// get the factor "f2" from the small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// Check a single factor
|
|
Dimensions expected;
|
|
insert(expected)("x1", 2)("x2", 2);
|
|
Dimensions actual = fg[1]->dimensions();
|
|
CHECK(expected==actual);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, getDim )
|
|
{
|
|
// get a factor
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
GaussianFactor::shared_ptr factor = fg[0];
|
|
|
|
// get the size of a variable
|
|
size_t actual = factor->getDim("x1");
|
|
|
|
// verify
|
|
size_t expected = 2;
|
|
CHECK(actual == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, combine )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get two factors from it and insert the factors into a vector
|
|
vector<GaussianFactor::shared_ptr> lfg;
|
|
lfg.push_back(fg[4 - 1]);
|
|
lfg.push_back(fg[2 - 1]);
|
|
|
|
// combine in a factor
|
|
GaussianFactor combined(lfg);
|
|
|
|
// sigmas
|
|
double sigma2 = 0.1;
|
|
double sigma4 = 0.2;
|
|
Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2);
|
|
|
|
// the expected combined linear factor
|
|
Matrix Ax2 = Matrix_(4, 2, // x2
|
|
-5., 0.,
|
|
+0., -5.,
|
|
10., 0.,
|
|
+0., 10.);
|
|
|
|
Matrix Al1 = Matrix_(4, 2, // l1
|
|
5., 0.,
|
|
0., 5.,
|
|
0., 0.,
|
|
0., 0.);
|
|
|
|
Matrix Ax1 = Matrix_(4, 2, // x1
|
|
0.00, 0., // f4
|
|
0.00, 0., // f4
|
|
-10., 0., // f2
|
|
0.00, -10. // f2
|
|
);
|
|
|
|
// the RHS
|
|
Vector b2(4);
|
|
b2(0) = -1.0;
|
|
b2(1) = 1.5;
|
|
b2(2) = 2.0;
|
|
b2(3) = -1.0;
|
|
|
|
// use general constructor for making arbitrary factors
|
|
vector<pair<Symbol, Matrix> > meas;
|
|
meas.push_back(make_pair("x2", Ax2));
|
|
meas.push_back(make_pair("l1", Al1));
|
|
meas.push_back(make_pair("x1", Ax1));
|
|
GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4)));
|
|
CHECK(assert_equal(expected,combined));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( NonlinearFactorGraph, combine2){
|
|
double sigma1 = 0.0957;
|
|
Matrix A11(2,2);
|
|
A11(0,0) = 1; A11(0,1) = 0;
|
|
A11(1,0) = 0; A11(1,1) = 1;
|
|
Vector b(2);
|
|
b(0) = 2; b(1) = -1;
|
|
GaussianFactor::shared_ptr f1(new GaussianFactor("x1", A11, b*sigma1, sharedSigma(2,sigma1)));
|
|
|
|
double sigma2 = 0.5;
|
|
A11(0,0) = 1; A11(0,1) = 0;
|
|
A11(1,0) = 0; A11(1,1) = -1;
|
|
b(0) = 4 ; b(1) = -5;
|
|
GaussianFactor::shared_ptr f2(new GaussianFactor("x1", A11, b*sigma2, sharedSigma(2,sigma2)));
|
|
|
|
double sigma3 = 0.25;
|
|
A11(0,0) = 1; A11(0,1) = 0;
|
|
A11(1,0) = 0; A11(1,1) = -1;
|
|
b(0) = 3 ; b(1) = -88;
|
|
GaussianFactor::shared_ptr f3(new GaussianFactor("x1", A11, b*sigma3, sharedSigma(2,sigma3)));
|
|
|
|
// TODO: find a real sigma value for this example
|
|
double sigma4 = 0.1;
|
|
A11(0,0) = 6; A11(0,1) = 0;
|
|
A11(1,0) = 0; A11(1,1) = 7;
|
|
b(0) = 5 ; b(1) = -6;
|
|
GaussianFactor::shared_ptr f4(new GaussianFactor("x1", A11*sigma4, b*sigma4, sharedSigma(2,sigma4)));
|
|
|
|
vector<GaussianFactor::shared_ptr> lfg;
|
|
lfg.push_back(f1);
|
|
lfg.push_back(f2);
|
|
lfg.push_back(f3);
|
|
lfg.push_back(f4);
|
|
GaussianFactor combined(lfg);
|
|
|
|
Vector sigmas = Vector_(8, sigma1, sigma1, sigma2, sigma2, sigma3, sigma3, sigma4, sigma4);
|
|
Matrix A22(8,2);
|
|
A22(0,0) = 1; A22(0,1) = 0;
|
|
A22(1,0) = 0; A22(1,1) = 1;
|
|
A22(2,0) = 1; A22(2,1) = 0;
|
|
A22(3,0) = 0; A22(3,1) = -1;
|
|
A22(4,0) = 1; A22(4,1) = 0;
|
|
A22(5,0) = 0; A22(5,1) = -1;
|
|
A22(6,0) = 0.6; A22(6,1) = 0;
|
|
A22(7,0) = 0; A22(7,1) = 0.7;
|
|
Vector exb(8);
|
|
exb(0) = 2*sigma1 ; exb(1) = -1*sigma1; exb(2) = 4*sigma2 ; exb(3) = -5*sigma2;
|
|
exb(4) = 3*sigma3 ; exb(5) = -88*sigma3; exb(6) = 5*sigma4 ; exb(7) = -6*sigma4;
|
|
|
|
vector<pair<Symbol, Matrix> > meas;
|
|
meas.push_back(make_pair("x1", A22));
|
|
GaussianFactor expected(meas, exb, sigmas);
|
|
CHECK(assert_equal(expected,combined));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, linearFactorN){
|
|
Matrix I = eye(2);
|
|
vector<GaussianFactor::shared_ptr> f;
|
|
SharedDiagonal model = sharedSigma(2,1.0);
|
|
f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x1", I, Vector_(2,
|
|
10.0, 5.0), model)));
|
|
f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x1", -10 * I,
|
|
"x2", 10 * I, Vector_(2, 1.0, -2.0), model)));
|
|
f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x2", -10 * I,
|
|
"x3", 10 * I, Vector_(2, 1.5, -1.5), model)));
|
|
f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x3", -10 * I,
|
|
"x4", 10 * I, Vector_(2, 2.0, -1.0), model)));
|
|
|
|
GaussianFactor combinedFactor(f);
|
|
|
|
vector<pair<Symbol, Matrix> > combinedMeasurement;
|
|
combinedMeasurement.push_back(make_pair("x1", Matrix_(8,2,
|
|
1.0, 0.0,
|
|
0.0, 1.0,
|
|
-10.0, 0.0,
|
|
0.0,-10.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0)));
|
|
combinedMeasurement.push_back(make_pair("x2", Matrix_(8,2,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
10.0, 0.0,
|
|
0.0, 10.0,
|
|
-10.0, 0.0,
|
|
0.0,-10.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0)));
|
|
combinedMeasurement.push_back(make_pair("x3", Matrix_(8,2,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
10.0, 0.0,
|
|
0.0, 10.0,
|
|
-10.0, 0.0,
|
|
0.0,-10.0)));
|
|
combinedMeasurement.push_back(make_pair("x4", Matrix_(8,2,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
0.0, 0.0,
|
|
10.0, 0.0,
|
|
0.0,10.0)));
|
|
Vector b = Vector_(8,
|
|
10.0, 5.0, 1.0, -2.0, 1.5, -1.5, 2.0, -1.0);
|
|
|
|
Vector sigmas = repeat(8,1.0);
|
|
GaussianFactor expected(combinedMeasurement, b, sigmas);
|
|
CHECK(assert_equal(expected,combinedFactor));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, error )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the first factor from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[0];
|
|
|
|
// check the error of the first factor with noisy config
|
|
VectorConfig cfg = createZeroDelta();
|
|
|
|
// calculate the error from the factor "f1"
|
|
// note the error is the same as in testNonlinearFactor
|
|
double actual = lf->error(cfg);
|
|
DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, eliminate )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get two factors from it and insert the factors into a vector
|
|
vector<GaussianFactor::shared_ptr> lfg;
|
|
lfg.push_back(fg[4 - 1]);
|
|
lfg.push_back(fg[2 - 1]);
|
|
|
|
// combine in a factor
|
|
GaussianFactor combined(lfg);
|
|
|
|
// eliminate the combined factor
|
|
GaussianConditional::shared_ptr actualCG;
|
|
GaussianFactor::shared_ptr actualLF;
|
|
boost::tie(actualCG,actualLF) = combined.eliminate("x2");
|
|
|
|
// create expected Conditional Gaussian
|
|
Matrix I = eye(2)*sqrt(125.0);
|
|
Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I;
|
|
Vector d = I*Vector_(2,0.2,-0.14);
|
|
|
|
// Check the conditional Gaussian
|
|
GaussianConditional
|
|
expectedCG("x2", d, R11, "l1", S12, "x1", S13, repeat(2, 1.0));
|
|
|
|
// the expected linear factor
|
|
I = eye(2)/0.2236;
|
|
Matrix Bl1 = I, Bx1 = -I;
|
|
Vector b1 = I*Vector_(2,0.0,0.2);
|
|
|
|
GaussianFactor expectedLF("l1", Bl1, "x1", Bx1, b1, repeat(2,1.0));
|
|
|
|
// check if the result matches
|
|
CHECK(assert_equal(expectedCG,*actualCG,1e-3));
|
|
CHECK(assert_equal(expectedLF,*actualLF,1e-3));
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, eliminate2 )
|
|
{
|
|
// sigmas
|
|
double sigma1 = 0.2;
|
|
double sigma2 = 0.1;
|
|
Vector sigmas = Vector_(4, sigma1, sigma1, sigma2, sigma2);
|
|
|
|
// the combined linear factor
|
|
Matrix Ax2 = Matrix_(4,2,
|
|
// x2
|
|
-1., 0.,
|
|
+0.,-1.,
|
|
1., 0.,
|
|
+0.,1.
|
|
);
|
|
|
|
Matrix Al1x1 = Matrix_(4,4,
|
|
// l1 x1
|
|
1., 0., 0.00, 0., // f4
|
|
0., 1., 0.00, 0., // f4
|
|
0., 0., -1., 0., // f2
|
|
0., 0., 0.00,-1. // f2
|
|
);
|
|
|
|
// the RHS
|
|
Vector b2(4);
|
|
b2(0) = -0.2;
|
|
b2(1) = 0.3;
|
|
b2(2) = 0.2;
|
|
b2(3) = -0.1;
|
|
|
|
vector<pair<Symbol, Matrix> > meas;
|
|
meas.push_back(make_pair("x2", Ax2));
|
|
meas.push_back(make_pair("l11", Al1x1));
|
|
GaussianFactor combined(meas, b2, sigmas);
|
|
|
|
// eliminate the combined factor
|
|
GaussianConditional::shared_ptr actualCG;
|
|
GaussianFactor::shared_ptr actualLF;
|
|
boost::tie(actualCG,actualLF) = combined.eliminate("x2");
|
|
|
|
// create expected Conditional Gaussian
|
|
double oldSigma = 0.0894427; // from when R was made unit
|
|
Matrix R11 = Matrix_(2,2,
|
|
1.00, 0.00,
|
|
0.00, 1.00
|
|
)/oldSigma;
|
|
Matrix S12 = Matrix_(2,4,
|
|
-0.20, 0.00,-0.80, 0.00,
|
|
+0.00,-0.20,+0.00,-0.80
|
|
)/oldSigma;
|
|
Vector d = Vector_(2,0.2,-0.14)/oldSigma;
|
|
GaussianConditional expectedCG("x2",d,R11,"l11",S12,ones(2));
|
|
CHECK(assert_equal(expectedCG,*actualCG,1e-4));
|
|
|
|
// the expected linear factor
|
|
double sigma = 0.2236;
|
|
Matrix Bl1x1 = Matrix_(2,4,
|
|
// l1 x1
|
|
1.00, 0.00, -1.00, 0.00,
|
|
0.00, 1.00, +0.00, -1.00
|
|
)/sigma;
|
|
Vector b1 =Vector_(2,0.0,0.894427);
|
|
GaussianFactor expectedLF("l11", Bl1x1, b1, repeat(2,1.0));
|
|
CHECK(assert_equal(expectedLF,*actualLF,1e-3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, default_error )
|
|
{
|
|
GaussianFactor f;
|
|
VectorConfig c;
|
|
double actual = f.error(c);
|
|
CHECK(actual==0.0);
|
|
}
|
|
|
|
//* ************************************************************************* */
|
|
TEST( GaussianFactor, eliminate_empty )
|
|
{
|
|
// create an empty factor
|
|
GaussianFactor f;
|
|
|
|
// eliminate the empty factor
|
|
GaussianConditional::shared_ptr actualCG;
|
|
GaussianFactor::shared_ptr actualLF;
|
|
boost::tie(actualCG,actualLF) = f.eliminate("x2");
|
|
|
|
// expected Conditional Gaussian is just a parent-less node with P(x)=1
|
|
GaussianConditional expectedCG("x2");
|
|
|
|
// expected remaining factor is still empty :-)
|
|
GaussianFactor expectedLF;
|
|
|
|
// check if the result matches
|
|
CHECK(actualCG->equals(expectedCG));
|
|
CHECK(actualLF->equals(expectedLF));
|
|
}
|
|
|
|
//* ************************************************************************* */
|
|
TEST( GaussianFactor, empty )
|
|
{
|
|
// create an empty factor
|
|
GaussianFactor f;
|
|
CHECK(f.empty()==true);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, matrix )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
|
|
Vector b2 = Vector_(2, 0.2, -0.1);
|
|
Matrix I = eye(2);
|
|
GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x1","x2";
|
|
|
|
// Test whitened version
|
|
Matrix A_act1; Vector b_act1;
|
|
boost::tie(A_act1,b_act1) = lf->matrix(ord, true);
|
|
|
|
Matrix A1 = Matrix_(2,4,
|
|
-10.0, 0.0, 10.0, 0.0,
|
|
000.0,-10.0, 0.0, 10.0 );
|
|
Vector b1 = Vector_(2, 2.0, -1.0);
|
|
|
|
EQUALITY(A_act1,A1);
|
|
EQUALITY(b_act1,b1);
|
|
|
|
// Test unwhitened version
|
|
Matrix A_act2; Vector b_act2;
|
|
boost::tie(A_act2,b_act2) = lf->matrix(ord, false);
|
|
|
|
|
|
Matrix A2 = Matrix_(2,4,
|
|
-1.0, 0.0, 1.0, 0.0,
|
|
000.0,-1.0, 0.0, 1.0 );
|
|
//Vector b2 = Vector_(2, 2.0, -1.0);
|
|
|
|
EQUALITY(A_act2,A2);
|
|
EQUALITY(b_act2,b2);
|
|
|
|
// Ensure that whitening is consistent
|
|
shared_ptr<noiseModel::Gaussian> model = lf->get_model();
|
|
model->WhitenSystem(A_act2, b_act2);
|
|
EQUALITY(A_act1, A_act2);
|
|
EQUALITY(b_act1, b_act2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, matrix_aug )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
//GaussianFactor::shared_ptr lf = fg[1];
|
|
Vector b2 = Vector_(2, 0.2, -0.1);
|
|
Matrix I = eye(2);
|
|
GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x1","x2";
|
|
|
|
// Test unwhitened version
|
|
Matrix Ab_act1;
|
|
Ab_act1 = lf->matrix_augmented(ord, false);
|
|
|
|
Matrix Ab1 = Matrix_(2,5,
|
|
-1.0, 0.0, 1.0, 0.0, 0.2,
|
|
00.0,- 1.0, 0.0, 1.0, -0.1 );
|
|
|
|
EQUALITY(Ab_act1,Ab1);
|
|
|
|
// Test whitened version
|
|
Matrix Ab_act2;
|
|
Ab_act2 = lf->matrix_augmented(ord, true);
|
|
|
|
Matrix Ab2 = Matrix_(2,5,
|
|
-10.0, 0.0, 10.0, 0.0, 2.0,
|
|
00.0, -10.0, 0.0, 10.0, -1.0 );
|
|
|
|
EQUALITY(Ab_act2,Ab2);
|
|
|
|
// Ensure that whitening is consistent
|
|
shared_ptr<noiseModel::Gaussian> model = lf->get_model();
|
|
model->WhitenInPlace(Ab_act1);
|
|
EQUALITY(Ab_act1, Ab_act2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// small aux. function to print out lists of anything
|
|
template<class T>
|
|
void print(const list<T>& i) {
|
|
copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, sparse )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x1","x2";
|
|
|
|
list<int> i,j;
|
|
list<double> s;
|
|
boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
|
|
|
|
list<int> i1,j1;
|
|
i1 += 1,2,1,2;
|
|
j1 += 1,2,3,4;
|
|
|
|
list<double> s1;
|
|
s1 += -10,-10,10,10;
|
|
|
|
CHECK(i==i1);
|
|
CHECK(j==j1);
|
|
CHECK(s==s1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, sparse2 )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x2","l1","x1";
|
|
|
|
list<int> i,j;
|
|
list<double> s;
|
|
boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
|
|
|
|
list<int> i1,j1;
|
|
i1 += 1,2,1,2;
|
|
j1 += 5,6,1,2;
|
|
|
|
list<double> s1;
|
|
s1 += -10,-10,10,10;
|
|
|
|
CHECK(i==i1);
|
|
CHECK(j==j1);
|
|
CHECK(s==s1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, size )
|
|
{
|
|
// create a linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get some factors from the graph
|
|
boost::shared_ptr<GaussianFactor> factor1 = fg[0];
|
|
boost::shared_ptr<GaussianFactor> factor2 = fg[1];
|
|
boost::shared_ptr<GaussianFactor> factor3 = fg[2];
|
|
|
|
CHECK(factor1->size() == 1);
|
|
CHECK(factor2->size() == 2);
|
|
CHECK(factor3->size() == 2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, tally_separator )
|
|
{
|
|
GaussianFactor f("x1", eye(2), "x2", eye(2), "l1", eye(2), ones(2), sigma0_1);
|
|
|
|
std::set<Symbol> act1, act2, act3;
|
|
f.tally_separator("x1", act1);
|
|
f.tally_separator("x2", act2);
|
|
f.tally_separator("l1", act3);
|
|
|
|
CHECK(act1.size() == 2);
|
|
CHECK(act1.count("x2") == 1);
|
|
CHECK(act1.count("l1") == 1);
|
|
|
|
CHECK(act2.size() == 2);
|
|
CHECK(act2.count("x1") == 1);
|
|
CHECK(act2.count("l1") == 1);
|
|
|
|
CHECK(act3.size() == 2);
|
|
CHECK(act3.count("x1") == 1);
|
|
CHECK(act3.count("x2") == 1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, CONSTRUCTOR_GaussianConditional )
|
|
{
|
|
Matrix R11 = eye(2);
|
|
Matrix S12 = Matrix_(2,2,
|
|
-0.200001, 0.00,
|
|
+0.00,-0.200001
|
|
);
|
|
Vector d(2); d(0) = 2.23607; d(1) = -1.56525;
|
|
Vector sigmas =repeat(2,0.29907);
|
|
GaussianConditional::shared_ptr CG(new GaussianConditional("x2",d,R11,"l11",S12,sigmas));
|
|
|
|
// Call the constructor we are testing !
|
|
GaussianFactor actualLF(CG);
|
|
|
|
GaussianFactor expectedLF("x2",R11,"l11",S12,d, sigmas);
|
|
CHECK(assert_equal(expectedLF,actualLF,1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( GaussianFactor, constraint_eliminate1 )
|
|
{
|
|
// construct a linear constraint
|
|
Vector v(2); v(0)=1.2; v(1)=3.4;
|
|
string key = "x0";
|
|
GaussianFactor lc(key, eye(2), v, constraintModel);
|
|
|
|
// eliminate it
|
|
GaussianConditional::shared_ptr actualCG;
|
|
GaussianFactor::shared_ptr actualLF;
|
|
boost::tie(actualCG,actualLF) = lc.eliminate("x0");
|
|
|
|
// verify linear factor
|
|
CHECK(actualLF->size() == 0);
|
|
|
|
// verify conditional Gaussian
|
|
Vector sigmas = Vector_(2, 0.0, 0.0);
|
|
GaussianConditional expCG("x0", v, eye(2), sigmas);
|
|
CHECK(assert_equal(expCG, *actualCG));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( GaussianFactor, constraint_eliminate2 )
|
|
{
|
|
// Construct a linear constraint
|
|
// RHS
|
|
Vector b(2); b(0)=3.0; b(1)=4.0;
|
|
|
|
// A1 - invertible
|
|
Matrix A1(2,2);
|
|
A1(0,0) = 1.0 ; A1(0,1) = 2.0;
|
|
A1(1,0) = 2.0 ; A1(1,1) = 1.0;
|
|
|
|
// A2 - not invertible
|
|
Matrix A2(2,2);
|
|
A2(0,0) = 1.0 ; A2(0,1) = 2.0;
|
|
A2(1,0) = 2.0 ; A2(1,1) = 4.0;
|
|
|
|
GaussianFactor lc("x", A1, "y", A2, b, constraintModel);
|
|
|
|
// eliminate x and verify results
|
|
GaussianConditional::shared_ptr actualCG;
|
|
GaussianFactor::shared_ptr actualLF;
|
|
boost::tie(actualCG, actualLF) = lc.eliminate("x");
|
|
|
|
// LF should be null
|
|
GaussianFactor expectedLF;
|
|
CHECK(assert_equal(*actualLF, expectedLF));
|
|
|
|
// verify CG
|
|
Matrix R = Matrix_(2, 2,
|
|
1.0, 2.0,
|
|
0.0, 1.0);
|
|
Matrix S = Matrix_(2,2,
|
|
1.0, 2.0,
|
|
0.0, 0.0);
|
|
Vector d = Vector_(2, 3.0, 0.6666);
|
|
GaussianConditional expectedCG("x", d, R, "y", S, zero(2));
|
|
CHECK(assert_equal(expectedCG, *actualCG, 1e-4));
|
|
}
|
|
/* ************************************************************************* */
|
|
TEST ( GaussianFactor, combine_matrix ) {
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
Dimensions dimensions = fg.dimensions();
|
|
|
|
// get two factors from it and insert the factors into a vector
|
|
vector<GaussianFactor::shared_ptr> lfg;
|
|
lfg.push_back(fg[4 - 1]);
|
|
lfg.push_back(fg[2 - 1]);
|
|
|
|
// combine in a factor
|
|
Matrix Ab; SharedDiagonal noise;
|
|
Ordering order; order += "x2", "l1", "x1";
|
|
boost::tie(Ab, noise) = GaussianFactor::combineFactorsAndCreateMatrix(lfg, order, dimensions);
|
|
|
|
// the expected augmented matrix
|
|
Matrix expAb = Matrix_(4, 7,
|
|
-5., 0., 5., 0., 0., 0.,-1.0,
|
|
+0., -5., 0., 5., 0., 0., 1.5,
|
|
10., 0., 0., 0.,-10., 0., 2.0,
|
|
+0., 10., 0., 0., 0.,-10.,-1.0);
|
|
|
|
// expected noise model
|
|
SharedDiagonal expModel = noiseModel::Unit::Create(4);
|
|
|
|
CHECK(assert_equal(expAb, Ab));
|
|
CHECK(assert_equal(*expModel, *noise));
|
|
}
|
|
|
|
|
|
///* ************************************************************************* *
|
|
//TEST ( GaussianFactor, constraint_eliminate3 )
|
|
//{
|
|
// // This test shows that ordering matters if there are non-invertible
|
|
// // blocks, as this example can be eliminated if x is first, but not
|
|
// // if y is first.
|
|
//
|
|
// // Construct a linear constraint
|
|
// // RHS
|
|
// Vector b(2); b(0)=3.0; b(1)=4.0;
|
|
//
|
|
// // A1 - invertible
|
|
// Matrix A1(2,2);
|
|
// A1(0,0) = 1.0 ; A1(0,1) = 2.0;
|
|
// A1(1,0) = 2.0 ; A1(1,1) = 1.0;
|
|
//
|
|
// // A2 - not invertible
|
|
// Matrix A2(2,2);
|
|
// A2(0,0) = 1.0 ; A2(0,1) = 2.0;
|
|
// A2(1,0) = 2.0 ; A2(1,1) = 4.0;
|
|
//
|
|
// GaussianFactor lc("x", A1, "y", A2, b, 0.0);
|
|
//
|
|
// // eliminate y from original graph
|
|
// // NOTE: this will throw an exception, as
|
|
// // the leading matrix is rank deficient
|
|
// GaussianConditional::shared_ptr actualCG;
|
|
// GaussianFactor::shared_ptr actualLF;
|
|
// try {
|
|
// boost::tie(actualCG, actualLF) = lc.eliminate("y");
|
|
// CHECK(false);
|
|
// } catch (domain_error) {
|
|
// CHECK(true);
|
|
// }
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|