133 lines
4.2 KiB
C++
133 lines
4.2 KiB
C++
/**
|
|
* @file testBayesNetConditioner.cpp
|
|
* @brief Unit tests for BayesNetConditioner
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include "Ordering.h"
|
|
#include "smallExample.h"
|
|
#include "BayesNetPreconditioner.h"
|
|
#include "iterative-inl.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesNetPreconditioner, operators )
|
|
{
|
|
// Build a simple Bayes net
|
|
// small Bayes Net x <- y, x=2D, y=1D
|
|
// 1 2 3 x1 0
|
|
// 0 1 2 * x2 = 0
|
|
// 0 0 1 x3 1
|
|
|
|
// Create a scalar Gaussian on y
|
|
GaussianBayesNet bn = scalarGaussian("y", 1, 0.1);
|
|
|
|
// Add a conditional node with one parent |Rx+Sy-d|
|
|
Matrix R11 = Matrix_(2, 2, 1.0, 2.0, 0.0, 1.0), S12 = Matrix_(2, 1, 3.0, 2.0);
|
|
Vector d = zero(2);
|
|
Vector sigmas = Vector_(2, 0.1, 0.1);
|
|
push_front(bn, "x", d, R11, "y", S12, sigmas);
|
|
|
|
// Create Precondioner class
|
|
GaussianFactorGraph dummy;
|
|
BayesNetPreconditioner P(dummy,bn);
|
|
|
|
// inv(R1)*d should equal solution [1;-2;1]
|
|
VectorConfig D;
|
|
D.insert("x", d);
|
|
D.insert("y", Vector_(1, 1.0 / 0.1)); // corrected by sigma
|
|
VectorConfig expected1;
|
|
expected1.insert("x", Vector_(2, 1.0, -2.0));
|
|
expected1.insert("y", Vector_(1, 1.0));
|
|
VectorConfig actual1 = P.backSubstitute(D);
|
|
CHECK(assert_equal(expected1,actual1));
|
|
|
|
// inv(R1')*ones should equal ?
|
|
VectorConfig ones;
|
|
ones.insert("x", Vector_(2, 1.0, 1.0));
|
|
ones.insert("y", Vector_(1, 1.0));
|
|
VectorConfig expected2;
|
|
expected2.insert("x", Vector_(2, 0.1, -0.1));
|
|
expected2.insert("y", Vector_(1, 0.0));
|
|
VectorConfig actual2 = P.backSubstituteTranspose(ones);
|
|
CHECK(assert_equal(expected2,actual2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesNetPreconditioner, conjugateGradients )
|
|
{
|
|
// Build a planar graph
|
|
GaussianFactorGraph Ab;
|
|
VectorConfig xtrue;
|
|
size_t N = 3;
|
|
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
|
|
|
// Get the spanning tree and corresponding ordering
|
|
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
|
|
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
|
|
|
|
// Eliminate the spanning tree to build a prior
|
|
Ordering ordering = planarOrdering(N);
|
|
GaussianBayesNet Rc1 = Ab1.eliminate(ordering); // R1*x-c1
|
|
VectorConfig xbar = optimize(Rc1); // xbar = inv(R1)*c1
|
|
|
|
// Create BayesNet-preconditioned system
|
|
BayesNetPreconditioner system(Ab,Rc1);
|
|
|
|
// Create zero config y0 and perturbed config y1
|
|
VectorConfig y0;
|
|
Vector z2 = zero(2);
|
|
BOOST_FOREACH(const Symbol& j, ordering) y0.insert(j,z2);
|
|
|
|
VectorConfig y1 = y0;
|
|
y1["x2003"] = Vector_(2, 1.0, -1.0);
|
|
VectorConfig x1 = system.x(y1);
|
|
|
|
// Check gradient for y0
|
|
VectorConfig expectedGradient0;
|
|
expectedGradient0.insert("x1001", Vector_(2,-1000.,-1000.));
|
|
expectedGradient0.insert("x1002", Vector_(2, 0., -300.));
|
|
expectedGradient0.insert("x1003", Vector_(2, 0., -300.));
|
|
expectedGradient0.insert("x2001", Vector_(2, -100., 200.));
|
|
expectedGradient0.insert("x2002", Vector_(2, -100., 0.));
|
|
expectedGradient0.insert("x2003", Vector_(2, -100., -200.));
|
|
expectedGradient0.insert("x3001", Vector_(2, -100., 100.));
|
|
expectedGradient0.insert("x3002", Vector_(2, -100., 0.));
|
|
expectedGradient0.insert("x3003", Vector_(2, -100., -100.));
|
|
VectorConfig actualGradient0 = system.gradient(y0);
|
|
CHECK(assert_equal(expectedGradient0,actualGradient0));
|
|
#ifdef VECTORBTREE
|
|
CHECK(actualGradient0.cloned(y0));
|
|
#endif
|
|
|
|
// Solve using PCG
|
|
bool verbose = false;
|
|
double epsilon = 1e-6; // had to crank this down !!!
|
|
size_t maxIterations = 100;
|
|
VectorConfig actual_y = gtsam::conjugateGradients<BayesNetPreconditioner,
|
|
VectorConfig, Errors>(system, y1, verbose, epsilon, epsilon, maxIterations);
|
|
VectorConfig actual_x = system.x(actual_y);
|
|
CHECK(assert_equal(xtrue,actual_x));
|
|
|
|
// Compare with non preconditioned version:
|
|
VectorConfig actual2 = conjugateGradientDescent(Ab, x1, verbose, epsilon,
|
|
maxIterations);
|
|
CHECK(assert_equal(xtrue,actual2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|