166 lines
5.1 KiB
C++
166 lines
5.1 KiB
C++
/*
|
|
* SubgraphPreconditioner.cpp
|
|
* Created on: Dec 31, 2009
|
|
* @author: Frank Dellaert
|
|
*/
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include "SubgraphPreconditioner.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
SubgraphPreconditioner::SubgraphPreconditioner(sharedFG& Ab1, sharedFG& Ab2,
|
|
sharedBayesNet& Rc1, sharedConfig& xbar) :
|
|
Ab1_(Ab1), Ab2_(Ab2), Rc1_(Rc1), xbar_(xbar), b2bar_(Ab2_->errors_(*xbar)) {
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// x = xbar + inv(R1)*y
|
|
VectorConfig SubgraphPreconditioner::x(const VectorConfig& y) const {
|
|
#ifdef VECTORBTREE
|
|
if (!y.cloned(*xbar_)) throw
|
|
invalid_argument("SubgraphPreconditioner::x: y needs to be cloned from xbar");
|
|
#endif
|
|
VectorConfig x = y;
|
|
backSubstituteInPlace(*Rc1_,x);
|
|
x += *xbar_;
|
|
return x;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double SubgraphPreconditioner::error(const VectorConfig& y) const {
|
|
|
|
Errors e;
|
|
|
|
// Use BayesNet order to add y contributions in order
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg, *Rc1_) {
|
|
const Symbol& j = cg->key();
|
|
e.push_back(y[j]); // append y
|
|
}
|
|
|
|
// Add A2 contribution
|
|
VectorConfig x = this->x(y);
|
|
Errors e2 = Ab2_->errors(x);
|
|
e.splice(e.end(), e2);
|
|
|
|
return 0.5 * dot(e, e);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// gradient is y + inv(R1')*A2'*(A2*inv(R1)*y-b2bar),
|
|
VectorConfig SubgraphPreconditioner::gradient(const VectorConfig& y) const {
|
|
VectorConfig x = this->x(y); // x = inv(R1)*y
|
|
Errors e2 = Ab2_->errors(x);
|
|
VectorConfig gx2 = VectorConfig::zero(y);
|
|
Ab2_->transposeMultiplyAdd(1.0,e2,gx2); // A2'*e2;
|
|
VectorConfig gy2 = gtsam::backSubstituteTranspose(*Rc1_, gx2); // inv(R1')*gx2
|
|
return y + gy2;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Apply operator A, A*y = [I;A2*inv(R1)]*y = [y; A2*inv(R1)*y]
|
|
Errors SubgraphPreconditioner::operator*(const VectorConfig& y) const {
|
|
|
|
Errors e;
|
|
|
|
// Use BayesNet order to add y contributions in order
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg, *Rc1_) {
|
|
const Symbol& j = cg->key();
|
|
e.push_back(y[j]); // append y
|
|
}
|
|
|
|
// Add A2 contribution
|
|
VectorConfig x = y; // TODO avoid ?
|
|
gtsam::backSubstituteInPlace(*Rc1_, x); // x=inv(R1)*y
|
|
Errors e2 = *Ab2_ * x; // A2*x
|
|
e.splice(e.end(), e2);
|
|
|
|
return e;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// In-place version that overwrites e
|
|
void SubgraphPreconditioner::multiplyInPlace(const VectorConfig& y, Errors& e) const {
|
|
|
|
Errors::iterator ei = e.begin();
|
|
|
|
// Use BayesNet order to add y contributions in order
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg, *Rc1_) {
|
|
const Symbol& j = cg->key();
|
|
*ei = y[j]; // append y
|
|
ei++;
|
|
}
|
|
|
|
// Add A2 contribution
|
|
VectorConfig x = y; // TODO avoid ?
|
|
gtsam::backSubstituteInPlace(*Rc1_, x); // x=inv(R1)*y
|
|
Ab2_->multiplyInPlace(x,ei); // use iterator version
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Apply operator A', A'*e = [I inv(R1')*A2']*e = e1 + inv(R1')*A2'*e2
|
|
VectorConfig SubgraphPreconditioner::operator^(const Errors& e) const {
|
|
|
|
VectorConfig y;
|
|
|
|
// Use BayesNet order to remove y contributions in order
|
|
Errors::const_iterator it = e.begin();
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg, *Rc1_) {
|
|
const Symbol& j = cg->key();
|
|
const Vector& ej = *(it++);
|
|
y.insert(j,ej);
|
|
}
|
|
|
|
// get A2 part
|
|
transposeMultiplyAdd2(1.0,it,e.end(),y);
|
|
|
|
return y;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// y += alpha*A'*e
|
|
void SubgraphPreconditioner::transposeMultiplyAdd
|
|
(double alpha, const Errors& e, VectorConfig& y) const {
|
|
|
|
// Use BayesNet order to remove y contributions in order
|
|
Errors::const_iterator it = e.begin();
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg, *Rc1_) {
|
|
const Symbol& j = cg->key();
|
|
const Vector& ej = *(it++);
|
|
axpy(alpha,ej,y[j]);
|
|
}
|
|
|
|
// get A2 part
|
|
transposeMultiplyAdd2(alpha,it,e.end(),y);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// y += alpha*inv(R1')*A2'*e2
|
|
void SubgraphPreconditioner::transposeMultiplyAdd2 (double alpha,
|
|
Errors::const_iterator it, Errors::const_iterator end, VectorConfig& y) const {
|
|
|
|
// create e2 with what's left of e
|
|
// TODO can we avoid creating e2 by passing iterator to transposeMultiplyAdd ?
|
|
Errors e2;
|
|
while (it != end)
|
|
e2.push_back(*(it++));
|
|
|
|
// Old code:
|
|
// VectorConfig x = *Ab2_ ^ e2; // x = A2'*e2
|
|
// y += alpha * gtsam::backSubstituteTranspose(*Rc1_, x); // inv(R1')*x;
|
|
// New Code:
|
|
VectorConfig x = VectorConfig::zero(y); // x = 0
|
|
Ab2_->transposeMultiplyAdd(1.0,e2,x); // x += A2'*e2
|
|
axpy(alpha, gtsam::backSubstituteTranspose(*Rc1_, x), y); // y += alpha*inv(R1')*x
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void SubgraphPreconditioner::print(const std::string& s) const {
|
|
cout << s << endl;
|
|
Ab2_->print();
|
|
}
|
|
} // nsamespace gtsam
|