gtsam/cpp/GaussianFactor.h

302 lines
8.5 KiB
C++

/**
* @file GaussianFactor.h
* @brief Linear Factor....A Gaussian
* @brief linearFactor
* @author Christian Potthast
*/
// \callgraph
#pragma once
#include <boost/shared_ptr.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/serialization/map.hpp>
#include <list>
#include <set>
#include "Factor.h"
#include "Matrix.h"
#include "VectorConfig.h"
#include "SharedDiagonal.h"
#include "SymbolMap.h"
namespace gtsam {
class GaussianConditional;
class Ordering;
/**
* Base Class for a linear factor.
* GaussianFactor is non-mutable (all methods const!).
* The factor value is exp(-0.5*||Ax-b||^2)
*/
class GaussianFactor: boost::noncopyable, public Factor<VectorConfig> {
public:
typedef boost::shared_ptr<GaussianFactor> shared_ptr;
typedef SymbolMap<Matrix>::iterator iterator;
typedef SymbolMap<Matrix>::const_iterator const_iterator;
protected:
SharedDiagonal model_; // Gaussian noise model with diagonal covariance matrix
SymbolMap<Matrix> As_; // linear matrices
Vector b_; // right-hand-side
public:
// TODO: eradicate, as implies non-const
GaussianFactor() {
}
/** Construct Null factor */
GaussianFactor(const Vector& b_in) :
b_(b_in) {
}
/** Construct unary factor */
GaussianFactor(const Symbol& key1, const Matrix& A1,
const Vector& b, const SharedDiagonal& model) :
model_(model),b_(b) {
As_.insert(make_pair(key1, A1));
}
/** Construct binary factor */
GaussianFactor(const Symbol& key1, const Matrix& A1,
const Symbol& key2, const Matrix& A2,
const Vector& b, const SharedDiagonal& model) :
model_(model), b_(b) {
As_.insert(make_pair(key1, A1));
As_.insert(make_pair(key2, A2));
}
/** Construct ternary factor */
GaussianFactor(const Symbol& key1, const Matrix& A1,
const Symbol& key2, const Matrix& A2,
const Symbol& key3, const Matrix& A3,
const Vector& b, const SharedDiagonal& model) :
model_(model),b_(b) {
As_.insert(make_pair(key1, A1));
As_.insert(make_pair(key2, A2));
As_.insert(make_pair(key3, A3));
}
/** Construct an n-ary factor */
GaussianFactor(const std::vector<std::pair<Symbol, Matrix> > &terms,
const Vector &b, const SharedDiagonal& model) :
model_(model), b_(b) {
for(unsigned int i=0; i<terms.size(); i++)
As_.insert(terms[i]);
}
/** Construct from Conditional Gaussian */
GaussianFactor(const boost::shared_ptr<GaussianConditional>& cg);
/**
* Constructor that combines a set of factors
* @param factors Set of factors to combine
*/
GaussianFactor(const std::vector<shared_ptr> & factors);
// Implementing Testable virtual functions
void print(const std::string& s = "") const;
bool equals(const Factor<VectorConfig>& lf, double tol = 1e-9) const;
// Implementing Factor virtual functions
Vector unweighted_error(const VectorConfig& c) const; /** (A*x-b) */
Vector error_vector(const VectorConfig& c) const; /** (A*x-b)/sigma */
double error(const VectorConfig& c) const; /** 0.5*(A*x-b)'*D*(A*x-b) */
std::size_t size() const { return As_.size();}
/** STL like, return the iterator pointing to the first node */
const_iterator const begin() const { return As_.begin();}
/** STL like, return the iterator pointing to the last node */
const_iterator const end() const { return As_.end(); }
/** check if empty */
bool empty() const { return b_.size() == 0;}
/** get a copy of b */
const Vector& get_b() const { return b_; }
/** get a copy of sigmas */
const Vector& get_sigmas() const { return model_->sigmas(); }
/** get a copy of model */
const SharedDiagonal& get_model() const { return model_; }
/**
* get a copy of the A matrix from a specific node
* O(log n)
*/
const Matrix& get_A(const Symbol& key) const {
return As_.at(key);
}
/** operator[] syntax for get */
inline const Matrix& operator[](const Symbol& name) const {
return get_A(name);
}
/** Check if factor involves variable with key */
bool involves(const Symbol& key) const {
const_iterator it = As_.find(key);
return (it != As_.end());
}
/**
* return the number of rows from the b vector
* @return a integer with the number of rows from the b vector
*/
int numberOfRows() const { return b_.size();}
/**
* Find all variables
* @return The set of all variable keys
*/
std::list<Symbol> keys() const;
/**
* return the first key
* @return The set of all variable keys
*/
Symbol key1() const { return As_.begin()->first; }
/**
* return the first key
* @return The set of all variable keys
*/
Symbol key2() const {
if (As_.size() < 2) throw std::invalid_argument("GaussianFactor: less than 2 keys!");
return (++(As_.begin()))->first;
}
/**
* Find all variables and their dimensions
* @return The set of all variable/dimension pairs
*/
Dimensions dimensions() const;
/**
* Get the dimension of a particular variable
* @param key is the name of the variable
* @return the size of the variable
*/
size_t getDim(const Symbol& key) const;
/**
* Add to separator set if this factor involves key, but don't add key itself
* @param key
* @param separator set to add to
*/
void tally_separator(const Symbol& key,
std::set<Symbol>& separator) const;
/** Return A*x */
Vector operator*(const VectorConfig& x) const;
/** Return A'*e */
VectorConfig operator^(const Vector& e) const;
/** x += A'*e */
void transposeMultiplyAdd(double alpha, const Vector& e, VectorConfig& x) const;
/**
* Return (dense) matrix associated with factor
* @param ordering of variables needed for matrix column order
* @param set weight to true to bake in the weights
*/
std::pair<Matrix, Vector> matrix(const Ordering& ordering, bool weight = true) const;
/**
* Return (dense) matrix associated with factor
* The returned system is an augmented matrix: [A b]
* @param ordering of variables needed for matrix column order
* @param set weight to use whitening to bake in weights
*/
Matrix matrix_augmented(const Ordering& ordering, bool weight = true) const;
/**
* Return vectors i, j, and s to generate an m-by-n sparse matrix
* such that S(i(k),j(k)) = s(k), which can be given to MATLAB's sparse.
* As above, the standard deviations are baked into A and b
* @param first column index for each variable
*/
boost::tuple<std::list<int>, std::list<int>, std::list<double> >
sparse(const Dimensions& columnIndices) const;
/* ************************************************************************* */
// MUTABLE functions. FD:on the path to being eradicated
/* ************************************************************************* */
/** insert, copies A */
void insert(const Symbol& key, const Matrix& A) {
As_.insert(std::make_pair(key, A));
}
/** set RHS, copies b */
void set_b(const Vector& b) {
this->b_ = b;
}
// set A matrices for the linear factor, same as insert ?
inline void set_A(const Symbol& key, const Matrix &A) {
insert(key, A);
}
/**
* Current Implementation: Full QR factorization
* eliminate (in place!) one of the variables connected to this factor
* @param key the key of the node to be eliminated
* @return a new factor and a conditional gaussian on the eliminated variable
*/
std::pair<boost::shared_ptr<GaussianConditional>, shared_ptr>
eliminate(const Symbol& key) const;
/**
* Performs elimination given an augmented matrix
* @param
*/
static std::pair<boost::shared_ptr<GaussianConditional>, shared_ptr>
eliminateMatrix(Matrix& Ab, SharedDiagonal model,
const Ordering& ordering,
const Dimensions& dimensions);
/**
* Take the factor f, and append to current matrices. Not very general.
* @param f linear factor graph
* @param m final number of rows of f, needs to be known in advance
* @param pos where to insert in the m-sized matrices
*/
void append_factor(GaussianFactor::shared_ptr f, size_t m, size_t pos);
/**
* Returns the augmented matrix version of a set of factors
* with the corresponding noiseModel
* @param factors is the set of factors to combine
* @param ordering of variables needed for matrix column order
* @return the augmented matrix and a noise model
*/
static std::pair<Matrix, SharedDiagonal> combineFactorsAndCreateMatrix(
const std::vector<GaussianFactor::shared_ptr>& factors,
const Ordering& order, const Dimensions& dimensions);
}; // GaussianFactor
/* ************************************************************************* */
/**
* creates a C++ string a la "x3", "m768"
* @param c the base character
* @param index the integer to be added
* @return a C++ string
*/
std::string symbol(char c, int index);
} // namespace gtsam