193 lines
6.4 KiB
C++
193 lines
6.4 KiB
C++
/**
|
|
* @file GaussianBayesNet.cpp
|
|
* @brief Chordal Bayes Net, the result of eliminating a factor graph
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
|
|
#include "GaussianBayesNet.h"
|
|
#include "VectorConfig.h"
|
|
#include "SymbolMap.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Explicitly instantiate so we don't have to include everywhere
|
|
#include "BayesNet-inl.h"
|
|
template class BayesNet<GaussianConditional>;
|
|
|
|
// trick from some reading group
|
|
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
|
|
#define REVERSE_FOREACH_PAIR( KEY, VAL, COL) BOOST_REVERSE_FOREACH (boost::tie(KEY,VAL),COL)
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
GaussianBayesNet scalarGaussian(const Symbol& key, double mu, double sigma) {
|
|
GaussianBayesNet bn;
|
|
GaussianConditional::shared_ptr
|
|
conditional(new GaussianConditional(key, Vector_(1,mu)/sigma, eye(1)/sigma, ones(1)));
|
|
bn.push_back(conditional);
|
|
return bn;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GaussianBayesNet simpleGaussian(const Symbol& key, const Vector& mu, double sigma) {
|
|
GaussianBayesNet bn;
|
|
size_t n = mu.size();
|
|
GaussianConditional::shared_ptr
|
|
conditional(new GaussianConditional(key, mu/sigma, eye(n)/sigma, ones(n)));
|
|
bn.push_back(conditional);
|
|
return bn;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void push_front(GaussianBayesNet& bn, const Symbol& key, Vector d, Matrix R,
|
|
const Symbol& name1, Matrix S, Vector sigmas) {
|
|
GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, sigmas));
|
|
bn.push_front(cg);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void push_front(GaussianBayesNet& bn, const Symbol& key, Vector d, Matrix R,
|
|
const Symbol& name1, Matrix S, const Symbol& name2, Matrix T, Vector sigmas) {
|
|
GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, name2, T, sigmas));
|
|
bn.push_front(cg);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
VectorConfig optimize(const GaussianBayesNet& bn)
|
|
{
|
|
return *optimize_(bn);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
boost::shared_ptr<VectorConfig> optimize_(const GaussianBayesNet& bn)
|
|
{
|
|
boost::shared_ptr<VectorConfig> result(new VectorConfig);
|
|
|
|
/** solve each node in turn in topological sort order (parents first)*/
|
|
BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) {
|
|
Vector x = cg->solve(*result); // Solve for that variable
|
|
result->insert(cg->key(),x); // store result in partial solution
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
VectorConfig backSubstitute(const GaussianBayesNet& bn, const VectorConfig& y) {
|
|
VectorConfig x = y;
|
|
backSubstituteInPlace(bn,x);
|
|
return x;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
|
|
void backSubstituteInPlace(const GaussianBayesNet& bn, VectorConfig& y) {
|
|
VectorConfig& x = y;
|
|
/** solve each node in turn in topological sort order (parents first)*/
|
|
BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) {
|
|
// i^th part of R*x=y, x=inv(R)*y
|
|
// (Rii*xi + R_i*x(i+1:))./si = yi <-> xi = inv(Rii)*(yi.*si - R_i*x(i+1:))
|
|
const Symbol& i = cg->key();
|
|
Vector zi = emul(y[i],cg->get_sigmas());
|
|
GaussianConditional::const_iterator it;
|
|
for (it = cg->parentsBegin(); it!= cg->parentsEnd(); it++) {
|
|
const Symbol& j = it->first;
|
|
const Matrix& Rij = it->second;
|
|
multiplyAdd(-1.0,Rij,x[j],zi);
|
|
}
|
|
x[i] = gtsam::backSubstituteUpper(cg->get_R(), zi);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// gy=inv(L)*gx by solving L*gy=gx.
|
|
// gy=inv(R'*inv(Sigma))*gx
|
|
// gz'*R'=gx', gy = gz.*sigmas
|
|
VectorConfig backSubstituteTranspose(const GaussianBayesNet& bn,
|
|
const VectorConfig& gx) {
|
|
|
|
// Initialize gy from gx
|
|
// TODO: used to insert zeros if gx did not have an entry for a variable in bn
|
|
VectorConfig gy = gx;
|
|
|
|
// we loop from first-eliminated to last-eliminated
|
|
// i^th part of L*gy=gx is done block-column by block-column of L
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg, bn) {
|
|
const Symbol& j = cg->key();
|
|
gy[j] = gtsam::backSubstituteUpper(gy[j],cg->get_R());
|
|
GaussianConditional::const_iterator it;
|
|
for (it = cg->parentsBegin(); it!= cg->parentsEnd(); it++) {
|
|
const Symbol& i = it->first;
|
|
const Matrix& Rij = it->second;
|
|
transposeMultiplyAdd(-1.0,Rij,gy[j],gy[i]);
|
|
}
|
|
}
|
|
|
|
// Scale gy
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg, bn) {
|
|
const Symbol& j = cg->key();
|
|
gy[j] = emul(gy[j],cg->get_sigmas());
|
|
}
|
|
|
|
return gy;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
pair<Matrix,Vector> matrix(const GaussianBayesNet& bn) {
|
|
|
|
// add the dimensions of all variables to get matrix dimension
|
|
// and at the same time create a mapping from keys to indices
|
|
size_t N=0; SymbolMap<size_t> mapping;
|
|
BOOST_FOREACH(GaussianConditional::shared_ptr cg,bn) {
|
|
mapping.insert(make_pair(cg->key(),N));
|
|
N += cg->dim();
|
|
}
|
|
|
|
// create matrix and copy in values
|
|
Matrix R = zeros(N,N);
|
|
Vector d(N);
|
|
Symbol key; size_t I;
|
|
FOREACH_PAIR(key,I,mapping) {
|
|
// find corresponding conditional
|
|
GaussianConditional::shared_ptr cg = bn[key];
|
|
|
|
// get sigmas
|
|
Vector sigmas = cg->get_sigmas();
|
|
|
|
// get RHS and copy to d
|
|
const Vector& d_ = cg->get_d();
|
|
const size_t n = d_.size();
|
|
for (size_t i=0;i<n;i++)
|
|
d(I+i) = d_(i)/sigmas(i);
|
|
|
|
// get leading R matrix and copy to R
|
|
const Matrix& R_ = cg->get_R();
|
|
for (size_t i=0;i<n;i++)
|
|
for(size_t j=0;j<n;j++)
|
|
R(I+i,I+j) = R_(i,j)/sigmas(i);
|
|
|
|
// loop over S matrices and copy them into R
|
|
GaussianConditional::const_iterator keyS = cg->parentsBegin();
|
|
for (; keyS!=cg->parentsEnd(); keyS++) {
|
|
Matrix S = keyS->second; // get S matrix
|
|
const size_t m = S.size1(), n = S.size2(); // find S size
|
|
const size_t J = mapping[keyS->first]; // find column index
|
|
for (size_t i=0;i<m;i++)
|
|
for(size_t j=0;j<n;j++)
|
|
R(I+i,J+j) = S(i,j)/sigmas(i);
|
|
} // keyS
|
|
|
|
} // keyI
|
|
|
|
return make_pair(R,d);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // namespace gtsam
|