gtsam/cpp/testSQPOptimizer.cpp

186 lines
5.8 KiB
C++

/*
* @file testSQPOptimizer.cpp
* @brief tests the optimization algorithm for nonlinear graphs with nonlinear constraints
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/map.hpp> // for insert
#include <Simulated2DMeasurement.h>
#include <simulated2D.h>
#include "NonlinearFactorGraph.h"
#include "NonlinearConstraint.h"
#include "VectorConfig.h"
#include "Ordering.h"
#include "SQPOptimizer.h"
// implementations
#include "NonlinearConstraint-inl.h"
#include "SQPOptimizer-inl.h"
using namespace std;
using namespace gtsam;
using namespace boost::assign;
// typedefs
typedef boost::shared_ptr<VectorConfig> shared_config;
typedef NonlinearFactorGraph<VectorConfig> NLGraph;
typedef boost::shared_ptr<NonlinearFactor<VectorConfig> > shared;
typedef boost::shared_ptr<NonlinearConstraint<VectorConfig> > shared_c;
TEST ( SQPOptimizer, basic ) {
// create a basic optimizer
NLGraph graph;
Ordering ordering;
shared_config config(new VectorConfig);
SQPOptimizer<NLGraph, VectorConfig> optimizer(graph, ordering, config);
// verify components
CHECK(assert_equal(graph, *(optimizer.graph())));
CHECK(assert_equal(ordering, *(optimizer.ordering())));
CHECK(assert_equal(*config, *(optimizer.config())));
}
namespace sqp_LinearMapWarp2 {
// binary constraint between landmarks
/** g(x) = x-y = 0 */
Vector g_func(const VectorConfig& config, const std::string& key1, const std::string& key2) {
return config[key1]-config[key2];
}
/** gradient at l1 */
Matrix grad_g1(const VectorConfig& config, const std::string& key) {
return eye(2);
}
/** gradient at l2 */
Matrix grad_g2(const VectorConfig& config, const std::string& key) {
return -1*eye(2);
}
} // \namespace sqp_LinearMapWarp2
namespace sqp_LinearMapWarp1 {
// Unary Constraint on x1
/** g(x) = x -[1;1] = 0 */
Vector g_func(const VectorConfig& config, const std::string& key) {
return config[key]-Vector_(2, 1.0, 1.0);
}
/** gradient at x1 */
Matrix grad_g(const VectorConfig& config, const std::string& key) {
return eye(2);
}
} // \namespace sqp_LinearMapWarp12
typedef SQPOptimizer<NLGraph, VectorConfig> Optimizer;
NLGraph linearMapWarpGraph() {
// constant constraint on x1
boost::shared_ptr<NonlinearConstraint1<VectorConfig> > c1(
new NonlinearConstraint1<VectorConfig>(
"x1", *sqp_LinearMapWarp1::grad_g,
*sqp_LinearMapWarp1::g_func, 2, "L_x1"));
// measurement from x1 to l1
Vector z1 = Vector_(2, 0.0, 5.0);
double sigma1 = 0.1;
shared f1(new Simulated2DMeasurement(z1, sigma1, "x1", "l1"));
// measurement from x2 to l2
Vector z2 = Vector_(2, -4.0, 0.0);
double sigma2 = 0.1;
shared f2(new Simulated2DMeasurement(z2, sigma2, "x2", "l2"));
// equality constraint between l1 and l2
boost::shared_ptr<NonlinearConstraint2<VectorConfig> > c2(
new NonlinearConstraint2<VectorConfig>(
"l1", *sqp_LinearMapWarp2::grad_g1,
"l2", *sqp_LinearMapWarp2::grad_g2,
*sqp_LinearMapWarp2::g_func, 2, "L_l1l2"));
// construct the graph
NLGraph graph;
graph.push_back(c1);
graph.push_back(c2);
graph.push_back(f1);
graph.push_back(f2);
return graph;
}
/* ********************************************************************* */
TEST ( SQPOptimizer, map_warp_initLam ) {
bool verbose = false;
// get a graph
NLGraph graph = linearMapWarpGraph();
// create an initial estimate
shared_config initialEstimate(new VectorConfig);
initialEstimate->insert("x1", Vector_(2, 1.0, 1.0));
initialEstimate->insert("l1", Vector_(2, 1.0, 6.0));
initialEstimate->insert("l2", Vector_(2, -4.0, 0.0)); // starting with a separate reference frame
initialEstimate->insert("x2", Vector_(2, 0.0, 0.0)); // other pose starts at origin
// create an initial estimate for the lagrange multiplier
shared_config initLagrange(new VectorConfig);
initLagrange->insert("L_l1l2", Vector_(2, 1.0, 1.0));
initLagrange->insert("L_x1", Vector_(2, 1.0, 1.0));
// create an ordering
Ordering ordering;
ordering += "x1", "x2", "l1", "l2", "L_l1l2", "L_x1";
// create an optimizer
Optimizer optimizer(graph, ordering, initialEstimate, initLagrange);
// perform an iteration of optimization
Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
// get the config back out and verify
VectorConfig actual = *(oneIteration.config());
VectorConfig expected;
expected.insert("x1", Vector_(2, 1.0, 1.0));
expected.insert("l1", Vector_(2, 1.0, 6.0));
expected.insert("l2", Vector_(2, 1.0, 6.0));
expected.insert("x2", Vector_(2, 5.0, 6.0));
CHECK(assert_equal(actual, expected));
}
/* ********************************************************************* */
TEST ( SQPOptimizer, map_warp ) {
// get a graph
NLGraph graph = linearMapWarpGraph();
// create an initial estimate
shared_config initialEstimate(new VectorConfig);
initialEstimate->insert("x1", Vector_(2, 1.0, 1.0));
initialEstimate->insert("l1", Vector_(2, 1.0, 6.0));
initialEstimate->insert("l2", Vector_(2, -4.0, 0.0)); // starting with a separate reference frame
initialEstimate->insert("x2", Vector_(2, 0.0, 0.0)); // other pose starts at origin
// create an ordering
Ordering ordering;
ordering += "x1", "x2", "l1", "l2";
// create an optimizer
Optimizer optimizer(graph, ordering, initialEstimate);
// perform an iteration of optimization
Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
// get the config back out and verify
VectorConfig actual = *(oneIteration.config());
VectorConfig expected;
expected.insert("x1", Vector_(2, 1.0, 1.0));
expected.insert("l1", Vector_(2, 1.0, 6.0));
expected.insert("l2", Vector_(2, 1.0, 6.0));
expected.insert("x2", Vector_(2, 5.0, 6.0));
CHECK(assert_equal(actual, expected));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */