531 lines
20 KiB
C++
531 lines
20 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file BatchFixedLagSmoother.cpp
|
|
* @brief An LM-based fixed-lag smoother.
|
|
*
|
|
* @author Michael Kaess, Stephen Williams
|
|
* @date Oct 14, 2012
|
|
*/
|
|
|
|
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
#include <gtsam/linear/GaussianJunctionTree.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/GaussianFactor.h>
|
|
#include <gtsam/inference/inference.h>
|
|
#include <gtsam/base/debug.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
|
|
FixedLagSmoother::print(s, keyFormatter);
|
|
// TODO: What else to print?
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs, double tol) const {
|
|
const BatchFixedLagSmoother* e = dynamic_cast<const BatchFixedLagSmoother*> (&rhs);
|
|
return e != NULL
|
|
&& FixedLagSmoother::equals(*e, tol)
|
|
&& factors_.equals(e->factors_, tol)
|
|
&& theta_.equals(e->theta_, tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta, const KeyTimestampMap& timestamps) {
|
|
|
|
const bool debug = ISDEBUG("BatchFixedLagSmoother update");
|
|
if(debug) {
|
|
std::cout << "BatchFixedLagSmoother::update() START" << std::endl;
|
|
}
|
|
|
|
// Add the new factors
|
|
insertFactors(newFactors);
|
|
|
|
// Add the new variables
|
|
theta_.insert(newTheta);
|
|
|
|
// Add new variables to the end of the ordering
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
|
|
ordering_.push_back(key_value.key);
|
|
}
|
|
|
|
// Augment Delta
|
|
std::vector<size_t> dims;
|
|
dims.reserve(newTheta.size());
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
|
|
dims.push_back(key_value.value.dim());
|
|
}
|
|
delta_.append(dims);
|
|
for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
|
|
delta_[i].setZero();
|
|
}
|
|
|
|
// Update the Timestamps associated with the factor keys
|
|
updateKeyTimestampMap(timestamps);
|
|
|
|
// Get current timestamp
|
|
double current_timestamp = getCurrentTimestamp();
|
|
if(debug) std::cout << "Current Timestamp: " << current_timestamp << std::endl;
|
|
|
|
// Find the set of variables to be marginalized out
|
|
std::set<Key> marginalizableKeys = findKeysBefore(current_timestamp - smootherLag_);
|
|
if(debug) {
|
|
std::cout << "Marginalizable Keys: ";
|
|
BOOST_FOREACH(Key key, marginalizableKeys) {
|
|
std::cout << DefaultKeyFormatter(key) << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
// Reorder
|
|
reorder(marginalizableKeys);
|
|
|
|
// Optimize
|
|
Result result;
|
|
if(theta_.size() > 0) {
|
|
result = optimize();
|
|
}
|
|
|
|
// Marginalize out old variables.
|
|
if(marginalizableKeys.size() > 0) {
|
|
marginalize(marginalizableKeys);
|
|
}
|
|
|
|
if(debug) {
|
|
std::cout << "BatchFixedLagSmoother::update() FINISH" << std::endl;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::insertFactors(const NonlinearFactorGraph& newFactors) {
|
|
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, newFactors) {
|
|
Index index;
|
|
// Insert the factor into an existing hole in the factor graph, if possible
|
|
if(availableSlots_.size() > 0) {
|
|
index = availableSlots_.front();
|
|
availableSlots_.pop();
|
|
factors_.replace(index, factor);
|
|
} else {
|
|
index = factors_.size();
|
|
factors_.push_back(factor);
|
|
}
|
|
// Update the FactorIndex
|
|
BOOST_FOREACH(Key key, *factor) {
|
|
factorIndex_[key].insert(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::removeFactors(const std::set<size_t>& deleteFactors) {
|
|
BOOST_FOREACH(size_t slot, deleteFactors) {
|
|
if(factors_.at(slot)) {
|
|
// Remove references to this factor from the FactorIndex
|
|
BOOST_FOREACH(Key key, *(factors_.at(slot))) {
|
|
factorIndex_[key].erase(slot);
|
|
}
|
|
// Remove the factor from the factor graph
|
|
factors_.remove(slot);
|
|
// Add the factor's old slot to the list of available slots
|
|
availableSlots_.push(slot);
|
|
} else {
|
|
// TODO: Throw an error??
|
|
std::cout << "Attempting to remove a factor from slot " << slot << ", but it is already NULL." << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::eraseKeys(const std::set<Key>& keys) {
|
|
|
|
BOOST_FOREACH(Key key, keys) {
|
|
// Erase the key from the values
|
|
theta_.erase(key);
|
|
|
|
// Erase the key from the factor index
|
|
factorIndex_.erase(key);
|
|
|
|
// Erase the key from the set of linearized keys
|
|
if(linearKeys_.exists(key)) {
|
|
linearKeys_.erase(key);
|
|
}
|
|
}
|
|
|
|
eraseKeyTimestampMap(keys);
|
|
|
|
// Permute the ordering such that the removed keys are at the end.
|
|
// This is a prerequisite for removing them from several structures
|
|
std::vector<Index> toBack;
|
|
BOOST_FOREACH(Key key, keys) {
|
|
toBack.push_back(ordering_.at(key));
|
|
}
|
|
Permutation forwardPermutation = Permutation::PushToBack(toBack, ordering_.size());
|
|
ordering_.permuteInPlace(forwardPermutation);
|
|
delta_.permuteInPlace(forwardPermutation);
|
|
|
|
// Remove marginalized keys from the ordering and delta
|
|
for(size_t i = 0; i < keys.size(); ++i) {
|
|
ordering_.pop_back();
|
|
delta_.pop_back();
|
|
}
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::reorder(const std::set<Key>& marginalizeKeys) {
|
|
|
|
// Calculate a variable index
|
|
VariableIndex variableIndex(*factors_.symbolic(ordering_), ordering_.size());
|
|
|
|
// COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
|
|
int group0 = 0;
|
|
int group1 = marginalizeKeys.size() > 0 ? 1 : 0;
|
|
|
|
// Initialize all variables to group1
|
|
std::vector<int> cmember(variableIndex.size(), group1);
|
|
|
|
// Set all of the marginalizeKeys to Group0
|
|
if(marginalizeKeys.size() > 0) {
|
|
BOOST_FOREACH(Key key, marginalizeKeys) {
|
|
cmember[ordering_.at(key)] = group0;
|
|
}
|
|
}
|
|
|
|
// Generate the permutation
|
|
Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex, cmember);
|
|
|
|
// Permute the ordering, variable index, and deltas
|
|
ordering_.permuteInPlace(forwardPermutation);
|
|
delta_.permuteInPlace(forwardPermutation);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
|
|
// Create output result structure
|
|
Result result;
|
|
result.nonlinearVariables = theta_.size() - linearKeys_.size();
|
|
result.linearVariables = linearKeys_.size();
|
|
|
|
// Set optimization parameters
|
|
double lambda = parameters_.lambdaInitial;
|
|
double lambdaFactor = parameters_.lambdaFactor;
|
|
double lambdaUpperBound = parameters_.lambdaUpperBound;
|
|
double lambdaLowerBound = 0.5 / parameters_.lambdaUpperBound;
|
|
size_t maxIterations = parameters_.maxIterations;
|
|
double relativeErrorTol = parameters_.relativeErrorTol;
|
|
double absoluteErrorTol = parameters_.absoluteErrorTol;
|
|
double errorTol = parameters_.errorTol;
|
|
|
|
// Create a Values that holds the current evaluation point
|
|
Values evalpoint = theta_.retract(delta_, ordering_);
|
|
result.error = factors_.error(evalpoint);
|
|
std::cout << "Initial Error = " << result.error << std::endl;
|
|
// Use a custom optimization loop so the linearization points can be controlled
|
|
double previousError;
|
|
VectorValues newDelta;
|
|
do {
|
|
previousError = result.error;
|
|
|
|
// Do next iteration
|
|
gttic(optimizer_iteration);
|
|
{
|
|
// Linearize graph around the linearization point
|
|
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
|
|
|
|
// Keep increasing lambda until we make make progress
|
|
while(true) {
|
|
// Add prior factors at the current solution
|
|
gttic(damp);
|
|
GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
|
|
dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
|
|
{
|
|
// for each of the variables, add a prior at the current solution
|
|
double sigma = 1.0 / std::sqrt(lambda);
|
|
for(size_t j=0; j<delta_.size(); ++j) {
|
|
size_t dim = delta_[j].size();
|
|
Matrix A = eye(dim);
|
|
Vector b = delta_[j];
|
|
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
|
|
GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model));
|
|
dampedFactorGraph.push_back(prior);
|
|
}
|
|
}
|
|
gttoc(damp);
|
|
result.intermediateSteps++;
|
|
std::cout << "Trying Lambda = " << lambda << std::endl;
|
|
gttic(solve);
|
|
// Solve Damped Gaussian Factor Graph
|
|
newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters_.getEliminationFunction());
|
|
// update the evalpoint with the new delta
|
|
evalpoint = theta_.retract(newDelta, ordering_);
|
|
gttoc(solve);
|
|
std::cout << " Max Delta = " << newDelta.asVector().maxCoeff() << std::endl;
|
|
// Evaluate the new error
|
|
gttic(compute_error);
|
|
double error = factors_.error(evalpoint);
|
|
gttoc(compute_error);
|
|
std::cout << " New Error = " << error << std::endl;
|
|
std::cout << " Change = " << result.error - error << std::endl;
|
|
if(error < result.error) {
|
|
std::cout << " Keeping Change" << std::endl;
|
|
// Keep this change
|
|
// Update the error value
|
|
result.error = error;
|
|
// Update the linearization point
|
|
theta_ = evalpoint;
|
|
// Reset the deltas to zeros
|
|
delta_.setZero();
|
|
// Put the linearization points and deltas back for specific variables
|
|
if(enforceConsistency_ && (linearKeys_.size() > 0)) {
|
|
theta_.update(linearKeys_);
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, linearKeys_) {
|
|
Index index = ordering_.at(key_value.key);
|
|
delta_.at(index) = newDelta.at(index);
|
|
}
|
|
}
|
|
// Decrease lambda for next time
|
|
lambda /= lambdaFactor;
|
|
if(lambda < lambdaLowerBound) {
|
|
lambda = lambdaLowerBound;
|
|
}
|
|
// End this lambda search iteration
|
|
break;
|
|
} else {
|
|
std::cout << " Rejecting Change" << std::endl;
|
|
// Reject this change
|
|
// Increase lambda and continue searching
|
|
lambda *= lambdaFactor;
|
|
if(lambda > lambdaUpperBound) {
|
|
// The maximum lambda has been used. Print a warning and end the search.
|
|
std::cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
} // end while
|
|
}
|
|
gttoc(optimizer_iteration);
|
|
|
|
result.iterations++;
|
|
} while(result.iterations < maxIterations &&
|
|
!checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT));
|
|
std::cout << "Final Error = " << result.error << std::endl;
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
|
|
// In order to marginalize out the selected variables, the factors involved in those variables
|
|
// must be identified and removed. Also, the effect of those removed factors on the
|
|
// remaining variables needs to be accounted for. This will be done with linear container factors
|
|
// from the result of a partial elimination. This function removes the marginalized factors and
|
|
// adds the linearized factors back in.
|
|
|
|
// Calculate marginal factors on the remaining variables (after marginalizing 'marginalizeKeys')
|
|
// Note: It is assumed the ordering already has these keys first
|
|
// Create the linear factor graph
|
|
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
|
|
|
|
// Create a variable index
|
|
VariableIndex variableIndex(linearFactorGraph, ordering_.size());
|
|
|
|
// Use the variable Index to mark the factors that will be marginalized
|
|
std::set<size_t> removedFactorSlots;
|
|
BOOST_FOREACH(Key key, marginalizeKeys) {
|
|
const FastList<size_t>& slots = variableIndex[ordering_.at(key)];
|
|
removedFactorSlots.insert(slots.begin(), slots.end());
|
|
}
|
|
|
|
// Construct an elimination tree to perform sparse elimination
|
|
std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex) );
|
|
|
|
// This is a tree. Only the top-most nodes/indices need to be eliminated; all of the children will be eliminated automatically
|
|
// Find the subset of nodes/keys that must be eliminated
|
|
std::set<Index> indicesToEliminate;
|
|
BOOST_FOREACH(Key key, marginalizeKeys) {
|
|
indicesToEliminate.insert(ordering_.at(key));
|
|
}
|
|
BOOST_FOREACH(Key key, marginalizeKeys) {
|
|
EliminationForest::removeChildrenIndices(indicesToEliminate, forest.at(ordering_.at(key)));
|
|
}
|
|
|
|
// Eliminate each top-most key, returning a Gaussian Factor on some of the remaining variables
|
|
// Convert the marginal factors into Linear Container Factors
|
|
// Add the marginal factor variables to the separator
|
|
NonlinearFactorGraph marginalFactors;
|
|
BOOST_FOREACH(Index index, indicesToEliminate) {
|
|
GaussianFactor::shared_ptr gaussianFactor = forest.at(index)->eliminateRecursive(parameters_.getEliminationFunction());
|
|
if(gaussianFactor->size() > 0) {
|
|
LinearContainerFactor::shared_ptr marginalFactor(new LinearContainerFactor(gaussianFactor, ordering_, theta_));
|
|
marginalFactors.push_back(marginalFactor);
|
|
// Add the keys associated with the marginal factor to the separator values
|
|
BOOST_FOREACH(Key key, *marginalFactor) {
|
|
if(!linearKeys_.exists(key)) {
|
|
linearKeys_.insert(key, theta_.at(key));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
insertFactors(marginalFactors);
|
|
|
|
// Remove the marginalized variables and factors from the filter
|
|
// Remove marginalized factors from the factor graph
|
|
removeFactors(removedFactorSlots);
|
|
|
|
// Remove marginalized keys from the system
|
|
eraseKeys(marginalizeKeys);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const std::string& label) {
|
|
std::cout << label;
|
|
BOOST_FOREACH(gtsam::Key key, keys) {
|
|
std::cout << " " << gtsam::DefaultKeyFormatter(key);
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicFactor(const NonlinearFactor::shared_ptr& factor) {
|
|
std::cout << "f(";
|
|
if(factor) {
|
|
BOOST_FOREACH(Key key, factor->keys()) {
|
|
std::cout << " " << gtsam::DefaultKeyFormatter(key);
|
|
}
|
|
} else {
|
|
std::cout << " NULL";
|
|
}
|
|
std::cout << " )" << std::endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering) {
|
|
std::cout << "f(";
|
|
BOOST_FOREACH(Index index, factor->keys()) {
|
|
std::cout << " " << index << "[" << gtsam::DefaultKeyFormatter(ordering.key(index)) << "]";
|
|
}
|
|
std::cout << " )" << std::endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicGraph(const NonlinearFactorGraph& graph, const std::string& label) {
|
|
std::cout << label << std::endl;
|
|
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, graph) {
|
|
PrintSymbolicFactor(factor);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph, const Ordering& ordering, const std::string& label) {
|
|
std::cout << label << std::endl;
|
|
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, graph) {
|
|
PrintSymbolicFactor(factor, ordering);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::vector<Index> BatchFixedLagSmoother::EliminationForest::ComputeParents(const VariableIndex& structure) {
|
|
// Number of factors and variables
|
|
const size_t m = structure.nFactors();
|
|
const size_t n = structure.size();
|
|
|
|
static const Index none = std::numeric_limits<Index>::max();
|
|
|
|
// Allocate result parent vector and vector of last factor columns
|
|
std::vector<Index> parents(n, none);
|
|
std::vector<Index> prevCol(m, none);
|
|
|
|
// for column j \in 1 to n do
|
|
for (Index j = 0; j < n; j++) {
|
|
// for row i \in Struct[A*j] do
|
|
BOOST_FOREACH(const size_t i, structure[j]) {
|
|
if (prevCol[i] != none) {
|
|
Index k = prevCol[i];
|
|
// find root r of the current tree that contains k
|
|
Index r = k;
|
|
while (parents[r] != none)
|
|
r = parents[r];
|
|
if (r != j) parents[r] = j;
|
|
}
|
|
prevCol[i] = j;
|
|
}
|
|
}
|
|
|
|
return parents;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::vector<BatchFixedLagSmoother::EliminationForest::shared_ptr> BatchFixedLagSmoother::EliminationForest::Create(const GaussianFactorGraph& factorGraph, const VariableIndex& structure) {
|
|
// Compute the tree structure
|
|
std::vector<Index> parents(ComputeParents(structure));
|
|
|
|
// Number of variables
|
|
const size_t n = structure.size();
|
|
|
|
static const Index none = std::numeric_limits<Index>::max();
|
|
|
|
// Create tree structure
|
|
std::vector<shared_ptr> trees(n);
|
|
for (Index k = 1; k <= n; k++) {
|
|
Index j = n - k; // Start at the last variable and loop down to 0
|
|
trees[j].reset(new EliminationForest(j)); // Create a new node on this variable
|
|
if (parents[j] != none) // If this node has a parent, add it to the parent's children
|
|
trees[parents[j]]->add(trees[j]);
|
|
}
|
|
|
|
// Hang factors in right places
|
|
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, factorGraph) {
|
|
if(factor && factor->size() > 0) {
|
|
Index j = *std::min_element(factor->begin(), factor->end());
|
|
if(j < structure.size())
|
|
trees[j]->add(factor);
|
|
}
|
|
}
|
|
|
|
return trees;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GaussianFactor::shared_ptr BatchFixedLagSmoother::EliminationForest::eliminateRecursive(GaussianFactorGraph::Eliminate function) {
|
|
|
|
// Create the list of factors to be eliminated, initially empty, and reserve space
|
|
GaussianFactorGraph factors;
|
|
factors.reserve(this->factors_.size() + this->subTrees_.size());
|
|
|
|
// Add all factors associated with the current node
|
|
factors.push_back(this->factors_.begin(), this->factors_.end());
|
|
|
|
// for all subtrees, eliminate into Bayes net and a separator factor, added to [factors]
|
|
BOOST_FOREACH(const shared_ptr& child, subTrees_)
|
|
factors.push_back(child->eliminateRecursive(function));
|
|
|
|
// Combine all factors (from this node and from subtrees) into a joint factor
|
|
GaussianFactorGraph::EliminationResult eliminated(function(factors, 1));
|
|
|
|
return eliminated.second;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::EliminationForest::removeChildrenIndices(std::set<Index>& indices, const BatchFixedLagSmoother::EliminationForest::shared_ptr& tree) {
|
|
BOOST_FOREACH(const EliminationForest::shared_ptr& child, tree->children()) {
|
|
indices.erase(child->key());
|
|
removeChildrenIndices(indices, child);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
} /// namespace gtsam
|