gtsam/cpp/LinearFactorGraph.cpp

245 lines
8.1 KiB
C++

/**
* @file LinearFactorGraph.cpp
* @brief Linear Factor Graph where all factors are Gaussians
* @author Kai Ni
* @author Christian Potthast
*/
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/numeric/ublas/lu.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <colamd/colamd.h>
#include "ChordalBayesNet.h"
#include "LinearFactorGraph.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
LinearFactorGraph::LinearFactorGraph(const ChordalBayesNet& CBN)
{
setCBN(CBN);
}
/* ************************************************************************* */
void LinearFactorGraph::setCBN(const ChordalBayesNet& CBN)
{
clear();
ChordalBayesNet::const_iterator it = CBN.begin();
for(; it != CBN.end(); it++) {
LinearFactor::shared_ptr lf(new LinearFactor(it->first, it->second));
push_back(lf);
}
}
/* ************************************************************************* */
/* find the separators */
/* ************************************************************************* */
set<string> LinearFactorGraph::find_separator(const string& key) const
{
set<string> separator;
BOOST_FOREACH(shared_factor factor,factors_)
factor->tally_separator(key,separator);
return separator;
}
/* ************************************************************************* */
/** O(n) */
/* ************************************************************************* */
std::vector<int> LinearFactorGraph::factors(const std::string& key) {
vector<int> found;
for(int i=0;i<factors_.size();i++)
if (factors_[i]->involves(key))
found.push_back(i);
return found;
}
/* ************************************************************************* */
/** O(n) */
/* ************************************************************************* */
LinearFactorSet
LinearFactorGraph::find_factors_and_remove(const string& key)
{
LinearFactorSet found;
for(iterator factor=factors_.begin(); factor!=factors_.end(); )
if ((*factor)->involves(key)) {
found.push_back(*factor);
factor = factors_.erase(factor);
} else {
factor++; // important, erase will have effect of ++
}
return found;
}
/* ************************************************************************* */
/* find factors and remove them from the factor graph: O(n) */
/* ************************************************************************* */
boost::shared_ptr<MutableLinearFactor>
LinearFactorGraph::combine_factors(const string& key)
{
LinearFactorSet found = find_factors_and_remove(key);
boost::shared_ptr<MutableLinearFactor> lf(new MutableLinearFactor(found));
return lf;
}
/* ************************************************************************* */
/* eliminate one node from the linear factor graph */
/* ************************************************************************* */
ConditionalGaussian::shared_ptr LinearFactorGraph::eliminate_one(const string& key)
{
// combine the factors of all nodes connected to the variable to be eliminated
// if no factors are connected to key, returns an empty factor
boost::shared_ptr<MutableLinearFactor> joint_factor = combine_factors(key);
// eliminate that joint factor
try {
ConditionalGaussian::shared_ptr conditional;
LinearFactor::shared_ptr factor;
boost::tie(conditional,factor) = joint_factor->eliminate(key);
if (!factor->empty())
push_back(factor);
// return the conditional Gaussian
return conditional;
}
catch (domain_error&) {
throw(domain_error("LinearFactorGraph::eliminate: singular graph"));
}
}
/* ************************************************************************* */
// eliminate factor graph using the given (not necessarily complete)
// ordering, yielding a chordal Bayes net and partially eliminated FG
/* ************************************************************************* */
ChordalBayesNet::shared_ptr
LinearFactorGraph::eliminate_partially(const Ordering& ordering)
{
ChordalBayesNet::shared_ptr chordalBayesNet (new ChordalBayesNet()); // empty
BOOST_FOREACH(string key, ordering) {
ConditionalGaussian::shared_ptr cg = eliminate_one(key);
chordalBayesNet->insert(key,cg);
}
return chordalBayesNet;
}
/* ************************************************************************* */
/** eliminate factor graph in the given order, yielding a chordal Bayes net */
/* ************************************************************************* */
ChordalBayesNet::shared_ptr
LinearFactorGraph::eliminate(const Ordering& ordering)
{
ChordalBayesNet::shared_ptr chordalBayesNet = eliminate_partially(ordering);
// after eliminate, only one zero indegree factor should remain
// TODO: this check needs to exist - verify that unit tests work when this check is in place
/*
if (factors_.size() != 1) {
print();
throw(invalid_argument("LinearFactorGraph::eliminate: graph not empty after eliminate, ordering incomplete?"));
}
*/
return chordalBayesNet;
}
/* ************************************************************************* */
/** optimize the linear factor graph */
/* ************************************************************************* */
VectorConfig LinearFactorGraph::optimize(const Ordering& ordering)
{
// eliminate all nodes in the given ordering -> chordal Bayes net
ChordalBayesNet::shared_ptr chordalBayesNet = eliminate(ordering);
// calculate new configuration (using backsubstitution)
boost::shared_ptr<VectorConfig> newConfig = chordalBayesNet->optimize();
return *newConfig;
}
/* ************************************************************************* */
/** combine two factor graphs */
/* ************************************************************************* */
void LinearFactorGraph::combine(const LinearFactorGraph &lfg){
for(const_iterator factor=lfg.factors_.begin(); factor!=lfg.factors_.end(); factor++){
push_back(*factor);
}
}
/* ************************************************************************* */
/** combine two factor graphs */
/* ************************************************************************* */
LinearFactorGraph LinearFactorGraph::combine2(const LinearFactorGraph& lfg1,
const LinearFactorGraph& lfg2) {
// create new linear factor graph equal to the first one
LinearFactorGraph fg = lfg1;
// add the second factors_ in the graph
for (const_iterator factor = lfg2.factors_.begin(); factor
!= lfg2.factors_.end(); factor++) {
fg.push_back(*factor);
}
return fg;
}
/* ************************************************************************* */
// find all variables and their dimensions
VariableSet LinearFactorGraph::variables() const {
VariableSet result;
BOOST_FOREACH(shared_factor factor,factors_) {
VariableSet vs = factor->variables();
BOOST_FOREACH(Variable v,vs) result.insert(v);
}
return result;
}
/* ************************************************************************* */
LinearFactorGraph LinearFactorGraph::add_priors(double sigma) const {
// start with this factor graph
LinearFactorGraph result = *this;
// find all variables and their dimensions
VariableSet vs = variables();
// for each of the variables, add a prior
BOOST_FOREACH(Variable v,vs) {
size_t n = v.dim();
const string& key = v.key();
Matrix A = sigma*eye(n);
Vector b = zero(n);
shared_factor prior(new LinearFactor(key,A,b));
result.push_back(prior);
}
return result;
}
/* ************************************************************************* */
pair<Matrix,Vector> LinearFactorGraph::matrix(const Ordering& ordering) const {
// get all factors
LinearFactorSet found;
BOOST_FOREACH(shared_factor factor,factors_)
found.push_back(factor);
// combine them
MutableLinearFactor lf(found);
// Return Matrix and Vector
return lf.matrix(ordering);
}
/* ************************************************************************* */