gtsam/gtsam_unstable/linear/LinearConstraint.h

108 lines
3.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* LinearConstraint.h
* @brief: LinearConstraint derived from Base with constrained noise model
* @date: Nov 27, 2014
* @author: thduynguyen
*/
#pragma once
#include <gtsam/linear/JacobianFactor.h>
namespace gtsam {
/**
* This class defines Linear constraints by inherit Base
* with the special Constrained noise model
*/
class LinearConstraint: public JacobianFactor {
public:
typedef LinearConstraint This; ///< Typedef to this class
typedef JacobianFactor Base; ///< Typedef to base class
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
public:
/** default constructor for I/O */
LinearConstraint() : Base() {}
/** Conversion from HessianFactor (does Cholesky to obtain Jacobian matrix) */
explicit LinearConstraint(const HessianFactor& hf) {
throw std::runtime_error("Cannot convert HessianFactor to LinearConstraint");
}
/** Construct unary factor */
LinearConstraint(Key i1, const Matrix& A1, const Vector& b) :
Base(i1, A1, b, noiseModel::Constrained::All(b.rows())) {
}
/** Construct binary factor */
LinearConstraint(Key i1, const Matrix& A1, Key i2, const Matrix& A2,
const Vector& b) :
Base(i1, A1, i2, A2, b, noiseModel::Constrained::All(b.rows())) {
}
/** Construct ternary factor */
LinearConstraint(Key i1, const Matrix& A1, Key i2, const Matrix& A2, Key i3,
const Matrix& A3, const Vector& b) :
Base(i1, A1, i2, A2, i3, A3, b,
noiseModel::Constrained::All(b.rows())) {
}
/** Construct an n-ary factor
* @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
* collection of keys and matrices making up the factor. */
template<typename TERMS>
LinearConstraint(const TERMS& terms, const Vector& b) :
Base(terms, b, noiseModel::Constrained::All(b.rows())) {
}
/** Virtual destructor */
virtual ~LinearConstraint() {
}
/** equals */
virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const {
return Base::equals(lf, tol);
}
/** print */
virtual void print(const std::string& s = "", const KeyFormatter& formatter =
DefaultKeyFormatter) const {
Base::print(s, formatter);
}
/** Clone this LinearConstraint */
virtual GaussianFactor::shared_ptr clone() const {
return boost::static_pointer_cast<GaussianFactor>(
boost::make_shared<LinearConstraint>(*this));
}
/** Special error_vector for constraints (A*x-b) */
Vector error_vector(const VectorValues& c) const {
return unweighted_error(c);
}
/** Special error for constraints.
* I think it should be zero, as this function is meant for objective cost.
* But the name "error" can be misleading.
* TODO: confirm with Frank!! */
virtual double error(const VectorValues& c) const {
return 0.0;
}
}; // LinearConstraint
} // gtsam