gtsam/python/gtsam_examples/VisualISAM2Example.py

133 lines
5.2 KiB
Python

from __future__ import print_function
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import time # for sleep()
import gtsam
from gtsam_examples import SFMdata
import gtsam_utils
# shorthand symbols:
X = lambda i: int(gtsam.Symbol('x', i))
L = lambda j: int(gtsam.Symbol('l', j))
def visual_ISAM2_plot(poses, points, result):
# VisualISAMPlot plots current state of ISAM2 object
# Author: Ellon Paiva
# Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
# Declare an id for the figure
fignum = 0
fig = plt.figure(fignum)
ax = fig.gca(projection='3d')
plt.cla()
# Plot points
# Can't use data because current frame might not see all points
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate()) # TODO - this is slow
# gtsam.plot3DPoints(result, [], marginals)
gtsam_utils.plot3DPoints(fignum, result, 'rx')
# Plot cameras
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
gtsam_utils.plotPose3(fignum, pose_i, 10)
i += 1
# draw
ax.set_xlim3d(-40, 40)
ax.set_ylim3d(-40, 40)
ax.set_zlim3d(-40, 40)
plt.pause(1)
def visual_ISAM2_example():
plt.ion()
# Define the camera calibration parameters
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
measurementNoise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses()
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps to maintain proper linearization
# and efficient variable ordering, iSAM2 performs partial relinearization/reordering at each step. A parameter
# structure is available that allows the user to set various properties, such as the relinearization threshold
# and type of linear solver. For this example, we we set the relinearization threshold small so the iSAM2 result
# will approach the batch result.
parameters = gtsam.ISAM2Params()
parameters.relinearize_threshold = 0.01
parameters.relinearize_skip = 1
isam = gtsam.ISAM2(parameters)
# Create a Factor Graph and Values to hold the new data
graph = gtsam.NonlinearFactorGraph()
initialEstimate = gtsam.Values()
# Loop over the different poses, adding the observations to iSAM incrementally
for i, pose in enumerate(poses):
# Add factors for each landmark observation
for j, point in enumerate(points):
camera = gtsam.PinholeCameraCal3_S2(pose, K)
measurement = camera.project(point)
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(measurement, measurementNoise, X(i), L(j), K))
# Add an initial guess for the current pose
# Intentionally initialize the variables off from the ground truth
initialEstimate.insert(X(i), pose.compose(gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
# If this is the first iteration, add a prior on the first pose to set the coordinate frame
# and a prior on the first landmark to set the scale
# Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
# adding it to iSAM.
if(i == 0):
# Add a prior on pose x0
poseNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], poseNoise))
# Add a prior on landmark l0
pointNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
graph.push_back(gtsam.PriorFactorPoint3(L(0), points[0], pointNoise)) # add directly to graph
# Add initial guesses to all observed landmarks
# Intentionally initialize the variables off from the ground truth
for j, point in enumerate(points):
initialEstimate.insert(L(j), point + gtsam.Point3(-0.25, 0.20, 0.15))
else:
# Update iSAM with the new factors
isam.update(graph, initialEstimate)
# Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
# If accuracy is desired at the expense of time, update(*) can be called additional times
# to perform multiple optimizer iterations every step.
isam.update()
currentEstimate = isam.calculate_estimate()
print("****************************************************")
print("Frame", i, ":")
for j in range(i + 1):
print(X(j), ":", currentEstimate.atPose3(X(j)))
for j in range(len(points)):
print(L(j), ":", currentEstimate.atPoint3(L(j)))
visual_ISAM2_plot(poses, points, currentEstimate)
# Clear the factor graph and values for the next iteration
graph.resize(0)
initialEstimate.clear()
plt.ioff()
plt.show()
if __name__ == '__main__':
visual_ISAM2_example()