from __future__ import print_function import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import time # for sleep() import gtsam from gtsam_examples import SFMdata import gtsam_utils # shorthand symbols: X = lambda i: int(gtsam.Symbol('x', i)) L = lambda j: int(gtsam.Symbol('l', j)) def visual_ISAM2_plot(poses, points, result): # VisualISAMPlot plots current state of ISAM2 object # Author: Ellon Paiva # Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert # Declare an id for the figure fignum = 0 fig = plt.figure(fignum) ax = fig.gca(projection='3d') plt.cla() # Plot points # Can't use data because current frame might not see all points # marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate()) # TODO - this is slow # gtsam.plot3DPoints(result, [], marginals) gtsam_utils.plot3DPoints(fignum, result, 'rx') # Plot cameras i = 0 while result.exists(X(i)): pose_i = result.atPose3(X(i)) gtsam_utils.plotPose3(fignum, pose_i, 10) i += 1 # draw ax.set_xlim3d(-40, 40) ax.set_ylim3d(-40, 40) ax.set_zlim3d(-40, 40) plt.pause(1) def visual_ISAM2_example(): plt.ion() # Define the camera calibration parameters K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0) # Define the camera observation noise model measurementNoise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v # Create the set of ground-truth landmarks points = SFMdata.createPoints() # Create the set of ground-truth poses poses = SFMdata.createPoses() # Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps to maintain proper linearization # and efficient variable ordering, iSAM2 performs partial relinearization/reordering at each step. A parameter # structure is available that allows the user to set various properties, such as the relinearization threshold # and type of linear solver. For this example, we we set the relinearization threshold small so the iSAM2 result # will approach the batch result. parameters = gtsam.ISAM2Params() parameters.relinearize_threshold = 0.01 parameters.relinearize_skip = 1 isam = gtsam.ISAM2(parameters) # Create a Factor Graph and Values to hold the new data graph = gtsam.NonlinearFactorGraph() initialEstimate = gtsam.Values() # Loop over the different poses, adding the observations to iSAM incrementally for i, pose in enumerate(poses): # Add factors for each landmark observation for j, point in enumerate(points): camera = gtsam.PinholeCameraCal3_S2(pose, K) measurement = camera.project(point) graph.push_back(gtsam.GenericProjectionFactorCal3_S2(measurement, measurementNoise, X(i), L(j), K)) # Add an initial guess for the current pose # Intentionally initialize the variables off from the ground truth initialEstimate.insert(X(i), pose.compose(gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20)))) # If this is the first iteration, add a prior on the first pose to set the coordinate frame # and a prior on the first landmark to set the scale # Also, as iSAM solves incrementally, we must wait until each is observed at least twice before # adding it to iSAM. if(i == 0): # Add a prior on pose x0 poseNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], poseNoise)) # Add a prior on landmark l0 pointNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1) graph.push_back(gtsam.PriorFactorPoint3(L(0), points[0], pointNoise)) # add directly to graph # Add initial guesses to all observed landmarks # Intentionally initialize the variables off from the ground truth for j, point in enumerate(points): initialEstimate.insert(L(j), point + gtsam.Point3(-0.25, 0.20, 0.15)) else: # Update iSAM with the new factors isam.update(graph, initialEstimate) # Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver. # If accuracy is desired at the expense of time, update(*) can be called additional times # to perform multiple optimizer iterations every step. isam.update() currentEstimate = isam.calculate_estimate() print("****************************************************") print("Frame", i, ":") for j in range(i + 1): print(X(j), ":", currentEstimate.atPose3(X(j))) for j in range(len(points)): print(L(j), ":", currentEstimate.atPoint3(L(j))) visual_ISAM2_plot(poses, points, currentEstimate) # Clear the factor graph and values for the next iteration graph.resize(0) initialEstimate.clear() plt.ioff() plt.show() if __name__ == '__main__': visual_ISAM2_example()