173 lines
5.1 KiB
C++
173 lines
5.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testBADFactor.cpp
|
|
* @date September 18, 2014
|
|
* @author Frank Dellaert
|
|
* @author Paul Furgale
|
|
* @brief unit tests for Block Automatic Differentiation
|
|
*/
|
|
|
|
#include <gtsam_unstable/slam/expressions.h>
|
|
#include <gtsam_unstable/nonlinear/BADFactor.h>
|
|
#include <gtsam/slam/GeneralSFMFactor.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam/base/Testable.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST(BADFactor, test) {
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Pose3());
|
|
values.insert(2, Point3(0, 0, 1));
|
|
values.insert(3, Cal3_S2());
|
|
|
|
// Create old-style factor to create expected value and derivatives
|
|
Point2 measured(-17, 30);
|
|
SharedNoiseModel model = noiseModel::Unit::Create(2);
|
|
GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
|
|
double expected_error = old.error(values);
|
|
GaussianFactor::shared_ptr expected = old.linearize(values);
|
|
|
|
// Test Constant expression
|
|
Expression<int> c(0);
|
|
|
|
// Create leaves
|
|
Pose3_ x(1);
|
|
Point3_ p(2);
|
|
Cal3_S2_ K(3);
|
|
|
|
// Create expression tree
|
|
Point3_ p_cam(x, &Pose3::transform_to, p);
|
|
Point2_ xy_hat(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
|
|
Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
|
|
|
|
// Create factor and check value, dimension, linearization
|
|
BADFactor<Point2> f(model, measured, uv_hat);
|
|
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f.dim());
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
EXPECT( assert_equal(*expected, *gf, 1e-9));
|
|
|
|
// Try concise version
|
|
BADFactor<Point2> f2(model, measured,
|
|
uncalibrate(K, project(transform_to(x, p))));
|
|
EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f2.dim());
|
|
boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
|
|
EXPECT( assert_equal(*expected, *gf2, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST(BADFactor, compose1) {
|
|
|
|
// Create expression
|
|
Rot3_ R1(1), R2(2);
|
|
Rot3_ R3 = R1 * R2;
|
|
|
|
// Create factor
|
|
BADFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Rot3());
|
|
values.insert(2, Rot3());
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(2);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT( assert_equal(eye(3), H[0],1e-9));
|
|
EXPECT( assert_equal(eye(3), H[1],1e-9));
|
|
|
|
// Check linearization
|
|
JacobianFactor expected(1, eye(3), 2, eye(3), zero(3));
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT( assert_equal(expected, *jf,1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with arguments referring to the same rotation
|
|
TEST(BADFactor, compose2) {
|
|
|
|
// Create expression
|
|
Rot3_ R1(1), R2(1);
|
|
Rot3_ R3 = R1 * R2;
|
|
|
|
// Create factor
|
|
BADFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Rot3());
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(1);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT_LONGS_EQUAL(1, H.size());
|
|
EXPECT( assert_equal(2*eye(3), H[0],1e-9));
|
|
|
|
// Check linearization
|
|
JacobianFactor expected(1, 2 * eye(3), zero(3));
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT( assert_equal(expected, *jf,1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with one arguments referring to a constant same rotation
|
|
TEST(BADFactor, compose3) {
|
|
|
|
// Create expression
|
|
Rot3_ R1(Rot3::identity()), R2(3);
|
|
Rot3_ R3 = R1 * R2;
|
|
|
|
// Create factor
|
|
BADFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(3, Rot3());
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(1);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT_LONGS_EQUAL(1, H.size());
|
|
EXPECT( assert_equal(eye(3), H[0],1e-9));
|
|
|
|
// Check linearization
|
|
JacobianFactor expected(3, eye(3), zero(3));
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT( assert_equal(expected, *jf,1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|