116 lines
3.6 KiB
C++
116 lines
3.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testNonlinearFactorGraph.cpp
|
|
* @brief Unit tests for Non-Linear Factor Graph
|
|
* @brief testNonlinearFactorGraph
|
|
* @author Carlos Nieto
|
|
* @author Christian Potthast
|
|
*/
|
|
|
|
/*STL/C++*/
|
|
#include <iostream>
|
|
using namespace std;
|
|
|
|
#include <boost/assign/std/list.hpp>
|
|
#include <boost/assign/std/set.hpp>
|
|
using namespace boost::assign;
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
// Magically casts strings like "x3" to a Symbol('x',3) key, see Symbol.h
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/slam/smallExample.h>
|
|
#include <gtsam/inference/FactorGraph.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Graph, equals )
|
|
{
|
|
Graph fg = createNonlinearFactorGraph();
|
|
Graph fg2 = createNonlinearFactorGraph();
|
|
CHECK( fg.equals(fg2) );
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Graph, error )
|
|
{
|
|
Graph fg = createNonlinearFactorGraph();
|
|
Values c1 = createValues();
|
|
double actual1 = fg.error(c1);
|
|
DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
|
|
|
|
Values c2 = createNoisyValues();
|
|
double actual2 = fg.error(c2);
|
|
DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Graph, keys )
|
|
{
|
|
Graph fg = createNonlinearFactorGraph();
|
|
set<Symbol> actual = fg.keys();
|
|
LONGS_EQUAL(3, actual.size());
|
|
set<Symbol>::const_iterator it = actual.begin();
|
|
CHECK(assert_equal(Symbol('l', 1), *(it++)));
|
|
CHECK(assert_equal(Symbol('x', 1), *(it++)));
|
|
CHECK(assert_equal(Symbol('x', 2), *(it++)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Graph, GET_ORDERING)
|
|
{
|
|
// Ordering expected; expected += "x1","l1","x2"; // For starting with x1,x2,l1
|
|
Ordering expected; expected += "l1","x2","x1"; // For starting with l1,x1,x2
|
|
Graph nlfg = createNonlinearFactorGraph();
|
|
SymbolicFactorGraph::shared_ptr symbolic;
|
|
Ordering::shared_ptr ordering;
|
|
boost::tie(symbolic, ordering) = nlfg.symbolic(createNoisyValues());
|
|
Ordering actual = *nlfg.orderingCOLAMD(createNoisyValues());
|
|
CHECK(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Graph, probPrime )
|
|
{
|
|
Graph fg = createNonlinearFactorGraph();
|
|
Values cfg = createValues();
|
|
|
|
// evaluate the probability of the factor graph
|
|
double actual = fg.probPrime(cfg);
|
|
double expected = 1.0;
|
|
DOUBLES_EQUAL(expected,actual,0);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Graph, linearize )
|
|
{
|
|
Graph fg = createNonlinearFactorGraph();
|
|
Values initial = createNoisyValues();
|
|
boost::shared_ptr<FactorGraph<GaussianFactor> > linearized = fg.linearize(initial, *initial.orderingArbitrary());
|
|
FactorGraph<GaussianFactor> expected = createGaussianFactorGraph(*initial.orderingArbitrary());
|
|
CHECK(assert_equal(expected,*linearized)); // Needs correct linearizations
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|