79 lines
2.9 KiB
C++
79 lines
2.9 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testInference.cpp
|
|
* @brief Unit tests for functionality declared in inference.h
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
// Magically casts strings like "x3" to a Symbol('x',3) key, see Symbol.h
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include <gtsam/linear/GaussianSequentialSolver.h>
|
|
#include <gtsam/slam/smallExample.h>
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
// The tests below test the *generic* inference algorithms. Some of these have
|
|
// specialized versions in the derived classes GaussianFactorGraph etc...
|
|
/* ************************************************************************* */
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Inference, marginals )
|
|
{
|
|
using namespace example;
|
|
// create and marginalize a small Bayes net on "x"
|
|
GaussianBayesNet cbn = createSmallGaussianBayesNet();
|
|
vector<Index> xvar; xvar.push_back(0);
|
|
GaussianBayesNet actual = *GaussianSequentialSolver(
|
|
*GaussianSequentialSolver(GaussianFactorGraph(cbn)).jointFactorGraph(xvar)).eliminate();
|
|
|
|
// expected is just scalar Gaussian on x
|
|
GaussianBayesNet expected = scalarGaussian(0, 4, sqrt(2));
|
|
CHECK(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Inference, marginals2)
|
|
{
|
|
planarSLAM::Graph fg;
|
|
SharedDiagonal poseModel(sharedSigma(3, 0.1));
|
|
SharedDiagonal pointModel(sharedSigma(3, 0.1));
|
|
|
|
fg.addPrior(0, Pose2(), poseModel);
|
|
fg.addOdometry(0, 1, Pose2(1.0,0.0,0.0), poseModel);
|
|
fg.addOdometry(1, 2, Pose2(1.0,0.0,0.0), poseModel);
|
|
fg.addBearingRange(0, 0, Rot2(), 1.0, pointModel);
|
|
fg.addBearingRange(1, 0, Rot2(), 1.0, pointModel);
|
|
fg.addBearingRange(2, 0, Rot2(), 1.0, pointModel);
|
|
|
|
Values init;
|
|
init.insert(planarSLAM::PoseKey(0), Pose2(0.0,0.0,0.0));
|
|
init.insert(planarSLAM::PoseKey(1), Pose2(1.0,0.0,0.0));
|
|
init.insert(planarSLAM::PoseKey(2), Pose2(2.0,0.0,0.0));
|
|
init.insert(planarSLAM::PointKey(0), Point2(1.0,1.0));
|
|
|
|
Ordering ordering(*fg.orderingCOLAMD(init));
|
|
FactorGraph<GaussianFactor>::shared_ptr gfg(fg.linearize(init, ordering));
|
|
GaussianMultifrontalSolver solver(*gfg);
|
|
solver.marginalFactor(ordering[planarSLAM::PointKey(0)]);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|