gtsam/inference/ISAM2-inl.h

461 lines
16 KiB
C++

/**
* @file ISAM2-inl.h
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
* @author Michael Kaess
*/
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <set>
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/VectorConfig.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/inference/BayesTree-inl.h>
#include <gtsam/inference/ISAM2.h>
#if 1 // timing
#include <sys/time.h>
// simple class for accumulating execution timing information by name
class Timing {
class Stats {
public:
double t0;
double t;
double t_max;
double t_min;
int n;
};
map<string, Stats> stats;
public:
void add_t0(string id, double t0) {
stats[id].t0 = t0;
}
double get_t0(string id) {
return stats[id].t0;
}
void add_dt(string id, double dt) {
Stats& s = stats[id];
s.t += dt;
s.n++;
if (s.n==1 || s.t_max < dt) s.t_max = dt;
if (s.n==1 || s.t_min > dt) s.t_min = dt;
}
void print() {
map<string, Stats>::iterator it;
for(it = stats.begin(); it!=stats.end(); it++) {
Stats& s = it->second;
printf("%s: %g (%i times, min: %g, max: %g)\n",
it->first.c_str(), s.t, s.n, s.t_min, s.t_max);
}
}
double time(string id) {
Stats& s = stats[id];
return s.t;
}
};
Timing timing;
double tic() {
struct timeval t;
gettimeofday(&t, NULL);
return ((double)t.tv_sec + ((double)t.tv_usec)/1000000.);
}
double tic(string id) {
double t0 = tic();
timing.add_t0(id, t0);
return t0;
}
double toc(double t) {
double s = tic();
return (max(0., s-t));
}
double toc(string id) {
double dt = toc(timing.get_t0(id));
timing.add_dt(id, dt);
return dt;
}
void tictoc_print() {
timing.print();
}
#else
void tictoc_print() {}
double tic(string id) {return 0.;}
double toc(string id) {return 0.;}
#endif
namespace gtsam {
using namespace std;
// from inference-inl.h - need to additionally return the newly created factor for caching
boost::shared_ptr<GaussianConditional> _eliminateOne(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Symbol& key) {
// combine the factors of all nodes connected to the variable to be eliminated
// if no factors are connected to key, returns an empty factor
tic("eliminate_removeandcombinefactors");
boost::shared_ptr<GaussianFactor> joint_factor = removeAndCombineFactors(graph,key);
toc("eliminate_removeandcombinefactors");
// eliminate that joint factor
boost::shared_ptr<GaussianFactor> factor;
boost::shared_ptr<GaussianConditional> conditional;
tic("eliminate_eliminate");
boost::tie(conditional, factor) = joint_factor->eliminate(key);
toc("eliminate_eliminate");
// ADDED: remember the intermediate result to be able to later restart computation in the middle
cached[key] = factor;
// add new factor on separator back into the graph
if (!factor->empty()) graph.push_back(factor);
// return the conditional Gaussian
return conditional;
}
// from GaussianFactorGraph.cpp, see _eliminateOne above
GaussianBayesNet _eliminate(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
GaussianBayesNet chordalBayesNet; // empty
BOOST_FOREACH(const Symbol& key, ordering) {
GaussianConditional::shared_ptr cg = _eliminateOne(graph, cached, key);
chordalBayesNet.push_back(cg);
}
return chordalBayesNet;
}
GaussianBayesNet _eliminate_const(const FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
// make a copy that can be modified locally
FactorGraph<GaussianFactor> graph_ignored = graph;
return _eliminate(graph_ignored, cached, ordering);
}
/** Create an empty Bayes Tree */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2() : BayesTree<Conditional>() {}
/** Create a Bayes Tree from a nonlinear factor graph */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
: BayesTree<Conditional>(nlfg.linearize(config)->eliminate(ordering)), theta_(config), nonlinearFactors_(nlfg) {
// todo: repeats calculation above, just to set "cached"
// De-referencing shared pointer can be quite expensive because creates temporary
_eliminate_const(*nlfg.linearize(config), cached_, ordering);
}
/* ************************************************************************* */
template<class Conditional, class Config>
list<size_t> ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
FactorGraph<NonlinearFactor<Config> > allAffected;
list<size_t> indices;
BOOST_FOREACH(const Symbol& key, keys) {
const list<size_t> l = nonlinearFactors_.factors(key);
indices.insert(indices.begin(), l.begin(), l.end());
}
indices.sort();
indices.unique();
return indices;
}
/* ************************************************************************* */
// retrieve all factors that ONLY contain the affected variables
// (note that the remaining stuff is summarized in the cached factors)
template<class Conditional, class Config>
boost::shared_ptr<GaussianFactorGraph> ISAM2<Conditional, Config>::relinearizeAffectedFactors
(const set<Symbol>& affectedKeys) const {
list<Symbol> affectedKeysList; // todo: shouldn't have to convert back to list...
affectedKeysList.insert(affectedKeysList.begin(), affectedKeys.begin(), affectedKeys.end());
list<size_t> candidates = getAffectedFactors(affectedKeysList);
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
BOOST_FOREACH(size_t idx, candidates) {
bool inside = true;
BOOST_FOREACH(const Symbol& key, nonlinearFactors_[idx]->keys()) {
if (affectedKeys.find(key) == affectedKeys.end()) {
inside = false;
break;
}
}
if (inside)
nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
}
// TODO: temporary might be expensive, return shared pointer ?
return nonlinearAffectedFactors.linearize(theta_);
}
/* ************************************************************************* */
// find intermediate (linearized) factors from cache that are passed into the affected area
template<class Conditional, class Config>
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::getCachedBoundaryFactors(Cliques& orphans) {
FactorGraph<GaussianFactor> cachedBoundary;
BOOST_FOREACH(sharedClique orphan, orphans) {
// find the last variable that was eliminated
const Symbol& key = orphan->ordering().back();
// retrieve the cached factor and add to boundary
cachedBoundary.push_back(cached_[key]);
}
return cachedBoundary;
}
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
// Input: BayesTree(this), newFactors
// 1. Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
const list<Symbol> newKeys = newFactors.keys();
Cliques orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(newKeys, affectedBayesNet, orphans);
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
// [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries,
// so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't
// contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose
// not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected
// in the cached_ values which again will be wrong]
// so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary
// BEGIN OF COPIED CODE
tic("linear_lookup1");
// ordering provides all keys in conditionals, there cannot be others because path to root included
set<Symbol> affectedKeys;
list<Symbol> tmp = affectedBayesNet.ordering();
affectedKeys.insert(tmp.begin(), tmp.end());
FactorGraph<GaussianFactor> factors(*relinearizeAffectedFactors(affectedKeys)); // todo: no need to relinearize here, should have cached linearized factors
cout << "linear: #affected: " << affectedKeys.size() << " #factors: " << factors.size() << endl;
toc("linear_lookup1");
// add the cached intermediate results from the boundary of the orphans ...
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
factors.push_back(cachedBoundary);
// END OF COPIED CODE
// 2. Add the new factors \Factors' into the resulting factor graph
factors.push_back(newFactors);
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
// create an ordering for the new and contaminated factors
// newKeys are passed in: those variables will be forced to the end in the ordering
set<Symbol> newKeysSet;
newKeysSet.insert(newKeys.begin(), newKeys.end());
Ordering ordering = factors.getConstrainedOrdering(newKeysSet);
// eliminate into a Bayes net
tic("linear_eliminate");
BayesNet<Conditional> bayesNet = _eliminate(factors, cached_, ordering);
toc("linear_eliminate");
// Create Index from ordering
IndexTable<Symbol> index(ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
this->insert(*rit, index);
// Save number of affectedCliques
lastAffectedCliqueCount = this->size();
// 4. Insert the orphans back into the new Bayes tree.
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
// Output: BayesTree(this)
}
/* ************************************************************************* */
// find all variables that are directly connected by a measurement to one of the marked variables
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::find_all(sharedClique clique, list<Symbol>& keys, const list<Symbol>& marked) {
// does the separator contain any of the variables?
bool found = false;
BOOST_FOREACH(const Symbol& key, clique->separator_) {
if (find(marked.begin(), marked.end(), key) != marked.end())
found = true;
}
if (found) {
// then add this clique
keys.push_back(clique->keys().front());
}
BOOST_FOREACH(const sharedClique& child, clique->children_) {
find_all(child, keys, marked);
}
}
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
// 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
list<Symbol> marked;
VectorConfig deltaMarked;
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
Symbol key = it->first;
Vector v = it->second;
if (max(abs(v)) >= relinearize_threshold) {
marked.push_back(key);
deltaMarked.insert(key, v);
}
}
if (marked.size()>0) {
// 2. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
theta_ = theta_.expmap(deltaMarked);
// 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
// mark all cliques that involve marked variables
list<Symbol> affectedSymbols(marked); // add all marked
tic("nonlin-find_all");
find_all(this->root(), affectedSymbols, marked); // add other cliques that have the marked ones in the separator
affectedSymbols.sort(); // remove duplicates
affectedSymbols.unique();
toc("nonlin-find_all");
// 4. From the leaves to the top, if a clique is marked:
// re-linearize the original factors in \Factors associated with the clique,
// add the cached marginal factors from its children, and re-eliminate.
// todo: for simplicity, currently simply remove the top and recreate it using the original ordering
tic("nonlin-mess");
Cliques orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(affectedSymbols, affectedBayesNet, orphans);
// remember original ordering
// todo Ordering original_ordering = affectedBayesNet.ordering(); // does not yield original ordering...
FactorGraph<GaussianFactor> tmp_factors(affectedBayesNet); // so instead we recalculate an acceptable ordering here
Ordering original_ordering = tmp_factors.getOrdering(); // todo - remove multiple lines up to here
boost::shared_ptr<GaussianFactorGraph> factors;
// ordering provides all keys in conditionals, there cannot be others because path to root included
set<Symbol> affectedKeys;
list<Symbol> tmp = affectedBayesNet.ordering();
affectedKeys.insert(tmp.begin(), tmp.end());
toc("nonlin-mess");
tic("nonlin_relin");
factors = relinearizeAffectedFactors(affectedKeys);
toc("nonlin_relin");
cout << "nonlinear: #marked: " << marked.size() << " #affected: " << affectedKeys.size() << " #factors: " << factors->size() << endl;
// add the cached intermediate results from the boundary of the orphans ...
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
factors->push_back(cachedBoundary);
// eliminate into a Bayes net
tic("nonlin_eliminate");
BayesNet<Conditional> bayesNet = _eliminate(*factors, cached_, original_ordering);
toc("nonlin_eliminate");
// Create Index from ordering
IndexTable<Symbol> index(original_ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
this->insert(*rit, index);
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
// Output: updated Bayes tree (this), updated linearization point theta_
}
}
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update(
const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
double wildfire_threshold, double relinearize_threshold, bool relinearize) {
tic("all");
tic("step1");
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
nonlinearFactors_.push_back(newFactors);
toc("step1");
tic("step2");
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
theta_.insert(newTheta);
toc("step2");
tic("step3");
// 3. Linearize new factor
boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
toc("step3");
tic("step4");
// 4. Linear iSAM step (alg 3)
linear_update(*linearFactors); // in: this
toc("step4");
tic("step5");
// 5. Calculate Delta (alg 0)
delta_ = optimize2(*this, wildfire_threshold);
toc("step5");
tic("step6");
// 6. Iterate Algorithm 4 until no more re-linearizations occur
if (relinearize) {
fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
}
toc("step6");
// todo: not part of algorithm in paper: linearization point and delta_ do not fit... have to update delta again
//todo delta_ = optimize2(*this, wildfire_threshold);
toc("all");
tictoc_print();
}
/* ************************************************************************* */
}
/// namespace gtsam