/** * @file ISAM2-inl.h * @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization. * @author Michael Kaess */ #include #include // for operator += using namespace boost::assign; #include #include #include #include #include #include #include #if 1 // timing #include // simple class for accumulating execution timing information by name class Timing { class Stats { public: double t0; double t; double t_max; double t_min; int n; }; map stats; public: void add_t0(string id, double t0) { stats[id].t0 = t0; } double get_t0(string id) { return stats[id].t0; } void add_dt(string id, double dt) { Stats& s = stats[id]; s.t += dt; s.n++; if (s.n==1 || s.t_max < dt) s.t_max = dt; if (s.n==1 || s.t_min > dt) s.t_min = dt; } void print() { map::iterator it; for(it = stats.begin(); it!=stats.end(); it++) { Stats& s = it->second; printf("%s: %g (%i times, min: %g, max: %g)\n", it->first.c_str(), s.t, s.n, s.t_min, s.t_max); } } double time(string id) { Stats& s = stats[id]; return s.t; } }; Timing timing; double tic() { struct timeval t; gettimeofday(&t, NULL); return ((double)t.tv_sec + ((double)t.tv_usec)/1000000.); } double tic(string id) { double t0 = tic(); timing.add_t0(id, t0); return t0; } double toc(double t) { double s = tic(); return (max(0., s-t)); } double toc(string id) { double dt = toc(timing.get_t0(id)); timing.add_dt(id, dt); return dt; } void tictoc_print() { timing.print(); } #else void tictoc_print() {} double tic(string id) {return 0.;} double toc(string id) {return 0.;} #endif namespace gtsam { using namespace std; // from inference-inl.h - need to additionally return the newly created factor for caching boost::shared_ptr _eliminateOne(FactorGraph& graph, CachedFactors& cached, const Symbol& key) { // combine the factors of all nodes connected to the variable to be eliminated // if no factors are connected to key, returns an empty factor tic("eliminate_removeandcombinefactors"); boost::shared_ptr joint_factor = removeAndCombineFactors(graph,key); toc("eliminate_removeandcombinefactors"); // eliminate that joint factor boost::shared_ptr factor; boost::shared_ptr conditional; tic("eliminate_eliminate"); boost::tie(conditional, factor) = joint_factor->eliminate(key); toc("eliminate_eliminate"); // ADDED: remember the intermediate result to be able to later restart computation in the middle cached[key] = factor; // add new factor on separator back into the graph if (!factor->empty()) graph.push_back(factor); // return the conditional Gaussian return conditional; } // from GaussianFactorGraph.cpp, see _eliminateOne above GaussianBayesNet _eliminate(FactorGraph& graph, CachedFactors& cached, const Ordering& ordering) { GaussianBayesNet chordalBayesNet; // empty BOOST_FOREACH(const Symbol& key, ordering) { GaussianConditional::shared_ptr cg = _eliminateOne(graph, cached, key); chordalBayesNet.push_back(cg); } return chordalBayesNet; } GaussianBayesNet _eliminate_const(const FactorGraph& graph, CachedFactors& cached, const Ordering& ordering) { // make a copy that can be modified locally FactorGraph graph_ignored = graph; return _eliminate(graph_ignored, cached, ordering); } /** Create an empty Bayes Tree */ template ISAM2::ISAM2() : BayesTree() {} /** Create a Bayes Tree from a nonlinear factor graph */ template ISAM2::ISAM2(const NonlinearFactorGraph& nlfg, const Ordering& ordering, const Config& config) : BayesTree(nlfg.linearize(config)->eliminate(ordering)), theta_(config), nonlinearFactors_(nlfg) { // todo: repeats calculation above, just to set "cached" // De-referencing shared pointer can be quite expensive because creates temporary _eliminate_const(*nlfg.linearize(config), cached_, ordering); } /* ************************************************************************* */ template list ISAM2::getAffectedFactors(const list& keys) const { FactorGraph > allAffected; list indices; BOOST_FOREACH(const Symbol& key, keys) { const list l = nonlinearFactors_.factors(key); indices.insert(indices.begin(), l.begin(), l.end()); } indices.sort(); indices.unique(); return indices; } /* ************************************************************************* */ // retrieve all factors that ONLY contain the affected variables // (note that the remaining stuff is summarized in the cached factors) template boost::shared_ptr ISAM2::relinearizeAffectedFactors (const set& affectedKeys) const { list affectedKeysList; // todo: shouldn't have to convert back to list... affectedKeysList.insert(affectedKeysList.begin(), affectedKeys.begin(), affectedKeys.end()); list candidates = getAffectedFactors(affectedKeysList); NonlinearFactorGraph nonlinearAffectedFactors; BOOST_FOREACH(size_t idx, candidates) { bool inside = true; BOOST_FOREACH(const Symbol& key, nonlinearFactors_[idx]->keys()) { if (affectedKeys.find(key) == affectedKeys.end()) { inside = false; break; } } if (inside) nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]); } // TODO: temporary might be expensive, return shared pointer ? return nonlinearAffectedFactors.linearize(theta_); } /* ************************************************************************* */ // find intermediate (linearized) factors from cache that are passed into the affected area template FactorGraph ISAM2::getCachedBoundaryFactors(Cliques& orphans) { FactorGraph cachedBoundary; BOOST_FOREACH(sharedClique orphan, orphans) { // find the last variable that was eliminated const Symbol& key = orphan->ordering().back(); // retrieve the cached factor and add to boundary cachedBoundary.push_back(cached_[key]); } return cachedBoundary; } /* ************************************************************************* */ template void ISAM2::linear_update(const FactorGraph& newFactors) { // Input: BayesTree(this), newFactors // 1. Remove top of Bayes tree and convert to a factor graph: // (a) For each affected variable, remove the corresponding clique and all parents up to the root. // (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques. const list newKeys = newFactors.keys(); Cliques orphans; BayesNet affectedBayesNet; this->removeTop(newKeys, affectedBayesNet, orphans); // FactorGraph factors(affectedBayesNet); // bug was here: we cannot reuse the original factors, because then the cached factors get messed up // [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries, // so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't // contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose // not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected // in the cached_ values which again will be wrong] // so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary // BEGIN OF COPIED CODE tic("linear_lookup1"); // ordering provides all keys in conditionals, there cannot be others because path to root included set affectedKeys; list tmp = affectedBayesNet.ordering(); affectedKeys.insert(tmp.begin(), tmp.end()); FactorGraph factors(*relinearizeAffectedFactors(affectedKeys)); // todo: no need to relinearize here, should have cached linearized factors cout << "linear: #affected: " << affectedKeys.size() << " #factors: " << factors.size() << endl; toc("linear_lookup1"); // add the cached intermediate results from the boundary of the orphans ... FactorGraph cachedBoundary = getCachedBoundaryFactors(orphans); factors.push_back(cachedBoundary); // END OF COPIED CODE // 2. Add the new factors \Factors' into the resulting factor graph factors.push_back(newFactors); // 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree]) // create an ordering for the new and contaminated factors // newKeys are passed in: those variables will be forced to the end in the ordering set newKeysSet; newKeysSet.insert(newKeys.begin(), newKeys.end()); Ordering ordering = factors.getConstrainedOrdering(newKeysSet); // eliminate into a Bayes net tic("linear_eliminate"); BayesNet bayesNet = _eliminate(factors, cached_, ordering); toc("linear_eliminate"); // Create Index from ordering IndexTable index(ordering); // insert conditionals back in, straight into the topless bayesTree typename BayesNet::const_reverse_iterator rit; for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit ) this->insert(*rit, index); // Save number of affectedCliques lastAffectedCliqueCount = this->size(); // 4. Insert the orphans back into the new Bayes tree. // add orphans to the bottom of the new tree BOOST_FOREACH(sharedClique orphan, orphans) { Symbol parentRepresentative = findParentClique(orphan->separator_, index); sharedClique parent = (*this)[parentRepresentative]; parent->children_ += orphan; orphan->parent_ = parent; // set new parent! } // Output: BayesTree(this) } /* ************************************************************************* */ // find all variables that are directly connected by a measurement to one of the marked variables template void ISAM2::find_all(sharedClique clique, list& keys, const list& marked) { // does the separator contain any of the variables? bool found = false; BOOST_FOREACH(const Symbol& key, clique->separator_) { if (find(marked.begin(), marked.end(), key) != marked.end()) found = true; } if (found) { // then add this clique keys.push_back(clique->keys().front()); } BOOST_FOREACH(const sharedClique& child, clique->children_) { find_all(child, keys, marked); } } /* ************************************************************************* */ template void ISAM2::fluid_relinearization(double relinearize_threshold) { // Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_ // 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}. list marked; VectorConfig deltaMarked; for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) { Symbol key = it->first; Vector v = it->second; if (max(abs(v)) >= relinearize_threshold) { marked.push_back(key); deltaMarked.insert(key, v); } } if (marked.size()>0) { // 2. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}. theta_ = theta_.expmap(deltaMarked); // 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors. // mark all cliques that involve marked variables list affectedSymbols(marked); // add all marked tic("nonlin-find_all"); find_all(this->root(), affectedSymbols, marked); // add other cliques that have the marked ones in the separator affectedSymbols.sort(); // remove duplicates affectedSymbols.unique(); toc("nonlin-find_all"); // 4. From the leaves to the top, if a clique is marked: // re-linearize the original factors in \Factors associated with the clique, // add the cached marginal factors from its children, and re-eliminate. // todo: for simplicity, currently simply remove the top and recreate it using the original ordering tic("nonlin-mess"); Cliques orphans; BayesNet affectedBayesNet; this->removeTop(affectedSymbols, affectedBayesNet, orphans); // remember original ordering // todo Ordering original_ordering = affectedBayesNet.ordering(); // does not yield original ordering... FactorGraph tmp_factors(affectedBayesNet); // so instead we recalculate an acceptable ordering here Ordering original_ordering = tmp_factors.getOrdering(); // todo - remove multiple lines up to here boost::shared_ptr factors; // ordering provides all keys in conditionals, there cannot be others because path to root included set affectedKeys; list tmp = affectedBayesNet.ordering(); affectedKeys.insert(tmp.begin(), tmp.end()); toc("nonlin-mess"); tic("nonlin_relin"); factors = relinearizeAffectedFactors(affectedKeys); toc("nonlin_relin"); cout << "nonlinear: #marked: " << marked.size() << " #affected: " << affectedKeys.size() << " #factors: " << factors->size() << endl; // add the cached intermediate results from the boundary of the orphans ... FactorGraph cachedBoundary = getCachedBoundaryFactors(orphans); factors->push_back(cachedBoundary); // eliminate into a Bayes net tic("nonlin_eliminate"); BayesNet bayesNet = _eliminate(*factors, cached_, original_ordering); toc("nonlin_eliminate"); // Create Index from ordering IndexTable index(original_ordering); // insert conditionals back in, straight into the topless bayesTree typename BayesNet::const_reverse_iterator rit; for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit ) this->insert(*rit, index); // add orphans to the bottom of the new tree BOOST_FOREACH(sharedClique orphan, orphans) { Symbol parentRepresentative = findParentClique(orphan->separator_, index); sharedClique parent = (*this)[parentRepresentative]; parent->children_ += orphan; orphan->parent_ = parent; // set new parent! } // Output: updated Bayes tree (this), updated linearization point theta_ } } /* ************************************************************************* */ template void ISAM2::update( const NonlinearFactorGraph& newFactors, const Config& newTheta, double wildfire_threshold, double relinearize_threshold, bool relinearize) { tic("all"); tic("step1"); // 1. Add any new factors \Factors:=\Factors\cup\Factors'. nonlinearFactors_.push_back(newFactors); toc("step1"); tic("step2"); // 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}. theta_.insert(newTheta); toc("step2"); tic("step3"); // 3. Linearize new factor boost::shared_ptr linearFactors = newFactors.linearize(theta_); toc("step3"); tic("step4"); // 4. Linear iSAM step (alg 3) linear_update(*linearFactors); // in: this toc("step4"); tic("step5"); // 5. Calculate Delta (alg 0) delta_ = optimize2(*this, wildfire_threshold); toc("step5"); tic("step6"); // 6. Iterate Algorithm 4 until no more re-linearizations occur if (relinearize) { fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this } toc("step6"); // todo: not part of algorithm in paper: linearization point and delta_ do not fit... have to update delta again //todo delta_ = optimize2(*this, wildfire_threshold); toc("all"); tictoc_print(); } /* ************************************************************************* */ } /// namespace gtsam