gtsam/gtsam_unstable/nonlinear/ConcurrentBatchSmoother.cpp

710 lines
26 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ConcurrentBatchSmoother.cpp
* @brief A Levenberg-Marquardt Batch Smoother that implements the
* Concurrent Filtering and Smoothing interface.
* @author Stephen Williams
*/
#include <gtsam_unstable/nonlinear/ConcurrentBatchSmoother.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/base/timing.h>
#include <gtsam/base/debug.h>
namespace gtsam {
/* ************************************************************************* */
void ConcurrentBatchSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
std::cout << s;
std::cout << " Factors:" << std::endl;
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, factors_) {
PrintNonlinearFactor(factor, " ", keyFormatter);
}
theta_.print("Values:\n");
}
/* ************************************************************************* */
bool ConcurrentBatchSmoother::equals(const ConcurrentSmoother& rhs, double tol) const {
const ConcurrentBatchSmoother* smoother = dynamic_cast<const ConcurrentBatchSmoother*>(&rhs);
return smoother
&& factors_.equals(smoother->factors_)
&& theta_.equals(smoother->theta_)
&& ordering_.equals(smoother->ordering_)
&& delta_.equals(smoother->delta_)
&& variableIndex_.equals(smoother->variableIndex_)
&& separatorValues_.equals(smoother->separatorValues_);
}
/* ************************************************************************* */
ConcurrentBatchSmoother::Result ConcurrentBatchSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta) {
gttic(update);
// Create the return result meta-data
Result result;
// Update all of the internal variables with the new information
gttic(augment_system);
// Add the new variables to theta
theta_.insert(newTheta);
// Add new variables to the end of the ordering
std::vector<size_t> dims;
dims.reserve(newTheta.size());
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
ordering_.push_back(key_value.key);
dims.push_back(key_value.value.dim());
}
// Augment Delta
delta_.append(dims);
for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
delta_[i].setZero();
}
// Add the new factors to the graph, updating the variable index
insertFactors(newFactors);
gttoc(augment_system);
// Reorder the system to ensure efficient optimization (and marginalization) performance
gttic(reorder);
reorder();
gttoc(reorder);
// Optimize the factors using a modified version of L-M
gttic(optimize);
if(factors_.size() > 0) {
result = optimize();
}
gttoc(optimize);
gttic(presync);
gttoc(presync);
gttoc(update);
// gttic(update);
//
// // Create result structure
// Result result;
//
// gttic(augment_system);
// // Add the new factors to the graph
// BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, newFactors) {
// insertFactor(factor);
// }
// // Add the new variables to theta
// theta_.insert(newTheta);
// gttoc(augment_system);
//
// // Optimize the graph, updating theta
// gttic(optimize);
// if(graph_.size() > 0){
// optimize();
//
// // TODO: fill in the results structure properly
// result.iterations = 0;
// result.nonlinearVariables = theta_.size() - separatorValues_.size();
// result.linearVariables = separatorValues_.size();
// result.error = 0;
// }
// gttoc(optimize);
//
// // Move all of the Pre-Sync code to the end of the update. This allows the smoother to perform these
// // calculations while the filter is still running
// gttic(presync);
// // Calculate and store the information passed up to the separator. This requires:
// // 1) Calculate an ordering that forces the separator variables to be in the root
// // 2) Eliminate all of the variables except the root. This produces one or more
// // linear, marginal factors on the separator variables.
// // 3) Convert the marginal factors into nonlinear ones using the 'LinearContainerFactor'
//
// if(separatorValues_.size() > 0) {
// // Force variables associated with root keys to keep the same linearization point
// gttic(enforce_consistency);
// Values linpoint;
// linpoint.insert(theta_);
// linpoint.insert(separatorValues_);
//
////linpoint.print("ConcurrentBatchSmoother::presync() LinPoint:\n");
//
// gttoc(enforce_consistency);
//
// // Calculate a root-constrained ordering
// gttic(compute_ordering);
// std::map<Key, int> constraints;
// BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
// constraints[key_value.key] = 1;
// }
// Ordering ordering = *graph_.orderingCOLAMDConstrained(linpoint, constraints);
// gttoc(compute_ordering);
//
// // Create a Bayes Tree using iSAM2 cliques
// gttic(create_bayes_tree);
// JunctionTree<GaussianFactorGraph, ISAM2Clique> jt(*graph_.linearize(linpoint, ordering));
// ISAM2Clique::shared_ptr root = jt.eliminate(parameters_.getEliminationFunction());
// BayesTree<GaussianConditional, ISAM2Clique> bayesTree;
// bayesTree.insert(root);
// gttoc(create_bayes_tree);
//
////ordering.print("ConcurrentBatchSmoother::presync() Ordering:\n");
//std::cout << "ConcurrentBatchSmoother::presync() Root Keys: "; BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) { std::cout << DefaultKeyFormatter(key_value.key) << " "; } std::cout << std::endl;
//std::cout << "ConcurrentBatchSmoother::presync() Bayes Tree:" << std::endl;
////SymbolicPrintTree(root, ordering, " ");
//
// // Extract the marginal factors from the smoother
// // For any non-filter factor that involves a root variable,
// // calculate its marginal on the root variables using the
// // current linearization point.
//
// // Find all of the smoother branches as the children of root cliques that are not also root cliques
// gttic(find_smoother_branches);
// std::set<ISAM2Clique::shared_ptr> rootCliques;
// std::set<ISAM2Clique::shared_ptr> smootherBranches;
// BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
// const ISAM2Clique::shared_ptr& clique = bayesTree.nodes().at(ordering.at(key_value.key));
// if(clique) {
// rootCliques.insert(clique);
// smootherBranches.insert(clique->children().begin(), clique->children().end());
// }
// }
// BOOST_FOREACH(const ISAM2Clique::shared_ptr& rootClique, rootCliques) {
// smootherBranches.erase(rootClique);
// }
// gttoc(find_smoother_branches);
//
// // Extract the cached factors on the root cliques from the smoother branches
// gttic(extract_cached_factors);
// GaussianFactorGraph cachedFactors;
// BOOST_FOREACH(const ISAM2Clique::shared_ptr& clique, smootherBranches) {
// cachedFactors.push_back(clique->cachedFactor());
// }
// gttoc(extract_cached_factors);
//
//std::cout << "ConcurrentBatchSmoother::presync() Cached Factors Before:" << std::endl;
//BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, cachedFactors) {
// std::cout << " g( ";
// BOOST_FOREACH(Index index, factor->keys()) {
// std::cout << DefaultKeyFormatter(ordering.key(index)) << " ";
// }
// std::cout << ")" << std::endl;
//}
//
// // Marginalize out any additional (non-root) variables
// gttic(marginalize_extra_variables);
// // The rootKeys have been ordered last, so their linear indices will be { linpoint.size()-rootKeys.size() :: linpoint.size()-1 }
// Index minRootIndex = linpoint.size() - separatorValues_.size();
// // Calculate the set of keys to be marginalized
// FastSet<Index> cachedIndices = cachedFactors.keys();
// std::vector<Index> marginalizeIndices;
// std::remove_copy_if(cachedIndices.begin(), cachedIndices.end(), std::back_inserter(marginalizeIndices), boost::lambda::_1 >= minRootIndex);
//
//std::cout << "ConcurrentBatchSmoother::presync() Marginalize Keys: ";
//BOOST_FOREACH(Index index, marginalizeIndices) { std::cout << DefaultKeyFormatter(ordering.key(index)) << " "; }
//std::cout << std::endl;
//
// // If non-root-keys are present, marginalize them out
// if(marginalizeIndices.size() > 0) {
// // Eliminate the extra variables, stored the remaining factors back into the 'cachedFactors' graph
// GaussianConditional::shared_ptr conditional;
// boost::tie(conditional, cachedFactors) = cachedFactors.eliminate(marginalizeIndices, parameters_.getEliminationFunction());
// }
// gttoc(marginalize_extra_variables);
//
//std::cout << "ConcurrentBatchSmoother::presync() Cached Factors After:" << std::endl;
//BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, cachedFactors) {
// std::cout << " g( ";
// BOOST_FOREACH(Index index, factor->keys()) {
// std::cout << DefaultKeyFormatter(ordering.key(index)) << " ";
// }
// std::cout << ")" << std::endl;
//}
//
// // Convert factors into 'Linearized' nonlinear factors
// gttic(store_cached_factors);
// smootherSummarization_.resize(0);
// BOOST_FOREACH(const GaussianFactor::shared_ptr& gaussianFactor, cachedFactors) {
// LinearContainerFactor::shared_ptr factor(new LinearContainerFactor(gaussianFactor, ordering, linpoint));
// smootherSummarization_.push_back(factor);
// }
// gttoc(store_cached_factors);
//
//std::cout << "ConcurrentBatchSmoother::presync() Smoother Summarization:" << std::endl;
//BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, smootherSummarization_) {
// std::cout << " f( ";
// BOOST_FOREACH(Key key, factor->keys()) {
// std::cout << DefaultKeyFormatter(key) << " ";
// }
// std::cout << ")" << std::endl;
//}
//
// }
// gttoc(presync);
//
// gttoc(update);
return result;
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::presync() {
gttic(presync);
gttoc(presync);
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::getSummarizedFactors(NonlinearFactorGraph& summarizedFactors) {
gttic(get_summarized_factors);
// Copy the previous calculated smoother summarization factors into the output
summarizedFactors.push_back(smootherSummarization_);
gttoc(get_summarized_factors);
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::synchronize(const NonlinearFactorGraph& smootherFactors, const Values& smootherValues,
const NonlinearFactorGraph& summarizedFactors, const Values& separatorValues) {
gttic(synchronize);
// Remove the previous filter summarization from the graph
removeFactors(filterSummarizationSlots_);
// Insert new linpoints into the values, augment the ordering, and store new dims to augment delta
std::vector<size_t> dims;
dims.reserve(smootherValues.size() + separatorValues.size());
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, smootherValues) {
Values::iterator iter = theta_.find(key_value.key);
if(iter == theta_.end()) {
theta_.insert(key_value.key, key_value.value);
ordering_.push_back(key_value.key);
dims.push_back(key_value.value.dim());
} else {
iter->value = key_value.value;
}
}
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues) {
Values::iterator iter = theta_.find(key_value.key);
if(iter == theta_.end()) {
theta_.insert(key_value.key, key_value.value);
ordering_.push_back(key_value.key);
dims.push_back(key_value.value.dim());
} else {
iter->value = key_value.value;
}
}
// Augment Delta
delta_.append(dims);
for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
delta_[i].setZero();
}
// Insert the new smoother factors
insertFactors(smootherFactors);
// Insert the new filter summarized factors
filterSummarizationSlots_ = insertFactors(summarizedFactors);
// Update the list of root keys
separatorValues_ = separatorValues;
gttoc(synchronize);
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::postsync() {
gttic(postsync);
gttoc(postsync);
}
/* ************************************************************************* */
std::vector<size_t> ConcurrentBatchSmoother::insertFactors(const NonlinearFactorGraph& factors) {
gttic(insert_factors);
// create the output vector
std::vector<size_t> slots;
slots.reserve(factors.size());
// Insert the factor into an existing hole in the factor graph, if possible
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, factors) {
size_t slot;
if(availableSlots_.size() > 0) {
slot = availableSlots_.front();
availableSlots_.pop();
factors_.replace(slot, factor);
} else {
slot = factors_.size();
factors_.push_back(factor);
}
slots.push_back(slot);
}
// Augment the Variable Index
variableIndex_.augment(*factors.symbolic(ordering_));
gttoc(insert_factors);
return slots;
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::removeFactors(const std::vector<size_t>& slots) {
gttic(remove_factors);
// For each factor slot to delete...
SymbolicFactorGraph factors;
BOOST_FOREACH(size_t slot, slots) {
// Create a symbolic version for the variable index
factors.push_back(factors_.at(slot)->symbolic(ordering_));
// Remove the factor from the graph
factors_.remove(slot);
// Mark the factor slot as available
availableSlots_.push(slot);
}
// Remove references to this factor from the VariableIndex
variableIndex_.remove(slots, factors);
gttoc(remove_factors);
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::reorder() {
// Initialize all variables to group0
std::vector<int> cmember(variableIndex_.size(), 0);
// Set all of the separator keys to Group1
if(separatorValues_.size() > 0) {
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
cmember[ordering_.at(key_value.key)] = 1;
}
}
// Generate the permutation
Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex_, cmember);
// Permute the ordering, variable index, and deltas
ordering_.permuteInPlace(forwardPermutation);
variableIndex_.permuteInPlace(forwardPermutation);
delta_.permuteInPlace(forwardPermutation);
}
/* ************************************************************************* */
ConcurrentBatchSmoother::Result ConcurrentBatchSmoother::optimize() {
// Create output result structure
Result result;
result.nonlinearVariables = theta_.size() - separatorValues_.size();
result.linearVariables = separatorValues_.size();
// Set optimization parameters
double lambda = parameters_.lambdaInitial;
double lambdaFactor = parameters_.lambdaFactor;
double lambdaUpperBound = parameters_.lambdaUpperBound;
double lambdaLowerBound = 0.5 / parameters_.lambdaUpperBound;
size_t maxIterations = parameters_.maxIterations;
double relativeErrorTol = parameters_.relativeErrorTol;
double absoluteErrorTol = parameters_.absoluteErrorTol;
double errorTol = parameters_.errorTol;
// Create a Values that holds the current evaluation point
Values evalpoint = theta_.retract(delta_, ordering_);
result.error = factors_.error(evalpoint);
// Use a custom optimization loop so the linearization points can be controlled
double previousError;
VectorValues newDelta;
do {
previousError = result.error;
// Do next iteration
gttic(optimizer_iteration);
{
// Linearize graph around the linearization point
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
// Keep increasing lambda until we make make progress
while(true) {
// Add prior factors at the current solution
gttic(damp);
GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
{
// for each of the variables, add a prior at the current solution
for(size_t j=0; j<delta_.size(); ++j) {
Matrix A = lambda * eye(delta_[j].size());
Vector b = lambda * delta_[j];
SharedDiagonal model = noiseModel::Unit::Create(delta_[j].size());
GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model));
dampedFactorGraph.push_back(prior);
}
}
gttoc(damp);
result.lambdas++;
gttic(solve);
// Solve Damped Gaussian Factor Graph
newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters_.getEliminationFunction());
// update the evalpoint with the new delta
evalpoint = theta_.retract(newDelta, ordering_);
gttoc(solve);
// Evaluate the new error
gttic(compute_error);
double error = factors_.error(evalpoint);
gttoc(compute_error);
if(error < result.error) {
// Keep this change
// Update the error value
result.error = error;
// Update the linearization point
theta_ = evalpoint;
// Reset the deltas to zeros
delta_.setZero();
// Put the linearization points and deltas back for specific variables
if(separatorValues_.size() > 0) {
theta_.update(separatorValues_);
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
Index index = ordering_.at(key_value.key);
delta_.at(index) = newDelta.at(index);
}
}
// Decrease lambda for next time
lambda /= lambdaFactor;
if(lambda < lambdaLowerBound) {
lambda = lambdaLowerBound;
}
// End this lambda search iteration
break;
} else {
// Reject this change
// Increase lambda and continue searching
lambda *= lambdaFactor;
if(lambda > lambdaUpperBound) {
// The maximum lambda has been used. Print a warning and end the search.
std::cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl;
break;
}
}
} // end while
}
gttoc(optimizer_iteration);
result.iterations++;
} while(result.iterations < maxIterations &&
!checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT));
return result;
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::PrintNonlinearFactor(const NonlinearFactor::shared_ptr& factor, const std::string& indent, const KeyFormatter& keyFormatter) {
std::cout << indent;
if(factor) {
if(boost::dynamic_pointer_cast<LinearContainerFactor>(factor)) {
std::cout << "l( ";
} else {
std::cout << "f( ";
}
BOOST_FOREACH(Key key, *factor) {
std::cout << keyFormatter(key) << " ";
}
std::cout << ")" << std::endl;
} else {
std::cout << "{ NULL }" << std::endl;
}
}
/* ************************************************************************* */
void ConcurrentBatchSmoother::PrintLinearFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
std::cout << indent;
if(factor) {
std::cout << "g( ";
BOOST_FOREACH(Index index, *factor) {
std::cout << keyFormatter(ordering.key(index)) << " ";
}
std::cout << ")" << std::endl;
} else {
std::cout << "{ NULL }" << std::endl;
}
}
///* ************************************************************************* */
//std::set<size_t> ConcurrentBatchSmoother::findFactorsWithAny(const std::set<Key>& keys) const {
// // Find the set of factor slots for each specified key
// std::set<size_t> factorSlots;
// BOOST_FOREACH(Key key, keys) {
// FactorIndex::const_iterator iter = factorIndex_.find(key);
// if(iter != factorIndex_.end()) {
// factorSlots.insert(iter->second.begin(), iter->second.end());
// }
// }
//
// return factorSlots;
//}
//
///* ************************************************************************* */
//std::set<size_t> ConcurrentBatchSmoother::findFactorsWithOnly(const std::set<Key>& keys) const {
// // Find the set of factor slots with any of the provided keys
// std::set<size_t> factorSlots = findFactorsWithAny(keys);
// // Test each factor for non-specified keys
// std::set<size_t>::iterator slot = factorSlots.begin();
// while(slot != factorSlots.end()) {
// const NonlinearFactor::shared_ptr& factor = graph_.at(*slot);
// std::set<Key> factorKeys(factor->begin(), factor->end()); // ensure the keys are sorted
// if(!std::includes(keys.begin(), keys.end(), factorKeys.begin(), factorKeys.end())) {
// factorSlots.erase(slot++);
// } else {
// ++slot;
// }
// }
//
// return factorSlots;
//}
//
///* ************************************************************************* */
//NonlinearFactor::shared_ptr ConcurrentBatchSmoother::marginalizeKeysFromFactor(const NonlinearFactor::shared_ptr& factor, const std::set<Key>& keysToKeep, const Values& theta) const {
//
//factor->print("Factor Before:\n");
//
// // Sort the keys for this factor
// std::set<Key> factorKeys;
// BOOST_FOREACH(Key key, *factor) {
// factorKeys.insert(key);
// }
//
// // Calculate the set of keys to marginalize
// std::set<Key> marginalizeKeys;
// std::set_difference(factorKeys.begin(), factorKeys.end(), keysToKeep.begin(), keysToKeep.end(), std::inserter(marginalizeKeys, marginalizeKeys.end()));
// std::set<Key> remainingKeys;
// std::set_intersection(factorKeys.begin(), factorKeys.end(), keysToKeep.begin(), keysToKeep.end(), std::inserter(remainingKeys, remainingKeys.end()));
//
// //
// if(marginalizeKeys.size() == 0) {
// // No keys need to be marginalized out. Simply return the original factor.
// return factor;
// } else if(marginalizeKeys.size() == factor->size()) {
// // All keys need to be marginalized out. Return an empty factor
// return NonlinearFactor::shared_ptr();
// } else {
// // (0) Create an ordering with the remaining keys last
// Ordering ordering;
// BOOST_FOREACH(Key key, marginalizeKeys) {
// ordering.push_back(key);
// }
// BOOST_FOREACH(Key key, remainingKeys) {
// ordering.push_back(key);
// }
//ordering.print("Ordering:\n");
//
// // (1) construct a linear factor graph
// GaussianFactorGraph graph;
// graph.push_back( factor->linearize(theta, ordering) );
//graph.at(0)->print("Linear Factor Before:\n");
//
// // (2) solve for the marginal factor
// // Perform partial elimination, resulting in a conditional probability ( P(MarginalizedVariable | RemainingVariables)
// // and factors on the remaining variables ( f(RemainingVariables) ). These are the factors we need to add to iSAM2
// std::vector<Index> variables;
// BOOST_FOREACH(Key key, marginalizeKeys) {
// variables.push_back(ordering.at(key));
// }
//// std::pair<GaussianFactorGraph::sharedConditional, GaussianFactorGraph> result = graph.eliminate(variables);
// GaussianFactorGraph::EliminationResult result = EliminateQR(graph, marginalizeKeys.size());
//result.first->print("Resulting Conditional:\n");
//result.second->print("Resulting Linear Factor:\n");
//// graph = result.second;
// graph.replace(0, result.second);
//
// // (3) convert the marginal factors into Linearized Factors
// NonlinearFactor::shared_ptr marginalFactor;
// assert(graph.size() <= 1);
// if(graph.size() > 0) {
//graph.at(0)->print("Linear Factor After:\n");
// marginalFactor.reset(new LinearContainerFactor(graph.at(0), ordering, theta));
// }
//marginalFactor->print("Factor After:\n");
// return marginalFactor;
// }
//}
///* ************************************************************************* */
//void ConcurrentBatchSmoother::PrintSingleClique(const ISAM2Clique::shared_ptr& clique, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
// std::cout << indent << "P( ";
// BOOST_FOREACH(Index index, clique->conditional()->frontals()){
// std::cout << keyFormatter(ordering.key(index)) << " ";
// }
// if(clique->conditional()->nrParents() > 0){
// std::cout << "| ";
// BOOST_FOREACH(Index index, clique->conditional()->parents()){
// std::cout << keyFormatter(ordering.key(index)) << " ";
// }
// }
// std::cout << ")" << std::endl;
//}
//
///* ************************************************************************* */
//void ConcurrentBatchSmoother::PrintRecursiveClique(const ISAM2Clique::shared_ptr& clique, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
//
// // Print this node
// PrintSingleClique(clique, ordering, indent, keyFormatter);
//
// // Print Children
// BOOST_FOREACH(const ISAM2Clique::shared_ptr& child, clique->children()) {
// PrintRecursiveClique(child, ordering, indent+" ", keyFormatter);
// }
//}
//
///* ************************************************************************* */
//void ConcurrentBatchSmoother::PrintBayesTree(const ISAM2& bayesTree, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
//
// std::cout << indent << "Bayes Tree:" << std::endl;
// if (bayesTree.root().use_count() == 0) {
// std::cout << indent << " {EMPTY}" << std::endl;
// } else {
// std::cout << indent << " clique size == " << bayesTree.size() << ", node size == " << bayesTree.nodes().size() << std::endl;
// PrintRecursiveClique(bayesTree.root(), ordering, indent+" ", keyFormatter);
// }
//}
/* ************************************************************************* */
}/// namespace gtsam