169 lines
5.3 KiB
C++
169 lines
5.3 KiB
C++
/**
|
|
* @file Factor.h
|
|
* @brief A simple factor class to use in a factor graph
|
|
* @brief factor
|
|
* @author Kai Ni
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
// \callgraph
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include <map>
|
|
#include <boost/utility.hpp> // for noncopyable
|
|
#include <boost/serialization/nvp.hpp>
|
|
#include <gtsam/base/types.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/inference/inference.h>
|
|
|
|
namespace gtsam {
|
|
|
|
class Conditional;
|
|
|
|
/**
|
|
* A simple factor class to use in a factor graph.
|
|
*
|
|
* We make it noncopyable so we enforce the fact that factors are
|
|
* kept in pointer containers. To be safe, you should make them
|
|
* immutable, i.e., practicing functional programming. However, this
|
|
* conflicts with efficiency as well, esp. in the case of incomplete
|
|
* QR factorization. A solution is still being sought.
|
|
*
|
|
* A Factor is templated on a Values, for example VectorValues is a values structure of
|
|
* labeled vectors. This way, we can have factors that might be defined on discrete
|
|
* variables, continuous ones, or a combination of both. It is up to the config to
|
|
* provide the appropriate values at the appropriate time.
|
|
*/
|
|
class Factor : public Testable<Factor> {
|
|
protected:
|
|
|
|
std::vector<varid_t> keys_;
|
|
ValueWithDefault<bool,true> permuted_;
|
|
|
|
/** Internal check to make sure keys are sorted (invariant during elimination).
|
|
* If NDEBUG is defined, this is empty and optimized out. */
|
|
void checkSorted() const;
|
|
|
|
public:
|
|
|
|
typedef gtsam::Conditional Conditional;
|
|
typedef boost::shared_ptr<Factor> shared_ptr;
|
|
typedef std::vector<varid_t>::iterator iterator;
|
|
typedef std::vector<varid_t>::const_iterator const_iterator;
|
|
|
|
/** Copy constructor */
|
|
Factor(const Factor& f);
|
|
|
|
/** Construct from derived type */
|
|
template<class Derived> Factor(const Derived& c);
|
|
|
|
/** Constructor from a collection of keys */
|
|
template<class KeyIterator> Factor(KeyIterator beginKey, KeyIterator endKey);
|
|
|
|
/** Default constructor for I/O */
|
|
Factor() : permuted_(false) {}
|
|
|
|
/** Construct unary factor */
|
|
Factor(varid_t key) : keys_(1), permuted_(false) {
|
|
keys_[0] = key; checkSorted(); }
|
|
|
|
/** Construct binary factor */
|
|
Factor(varid_t key1, varid_t key2) : keys_(2), permuted_(false) {
|
|
keys_[0] = key1; keys_[1] = key2; checkSorted(); }
|
|
|
|
/** Construct ternary factor */
|
|
Factor(varid_t key1, varid_t key2, varid_t key3) : keys_(3), permuted_(false) {
|
|
keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; checkSorted(); }
|
|
|
|
/** Construct 4-way factor */
|
|
Factor(varid_t key1, varid_t key2, varid_t key3, varid_t key4) : keys_(4), permuted_(false) {
|
|
keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; keys_[3] = key4; checkSorted(); }
|
|
|
|
/** Named constructor for combining a set of factors with pre-computed set of
|
|
* variables. (Old style - will be removed when scalar elimination is
|
|
* removed in favor of the EliminationTree). */
|
|
template<class FactorGraphType, class VariableIndexStorage>
|
|
static shared_ptr Combine(const FactorGraphType& factorGraph,
|
|
const VariableIndex<VariableIndexStorage>& variableIndex, const std::vector<size_t>& factors,
|
|
const std::vector<varid_t>& variables, const std::vector<std::vector<size_t> >& variablePositions);
|
|
|
|
/** Create a combined joint factor (new style for EliminationTree). */
|
|
template<class MapAllocator>
|
|
static shared_ptr Combine(const FactorGraph<Factor>& factors, const std::map<varid_t, std::vector<varid_t>, std::less<varid_t>, MapAllocator>& variableSlots);
|
|
|
|
/**
|
|
* eliminate the first variable involved in this factor
|
|
* @return a conditional on the eliminated variable
|
|
*/
|
|
boost::shared_ptr<Conditional> eliminateFirst();
|
|
|
|
/**
|
|
* eliminate the first nFrontals frontal variables.
|
|
*/
|
|
boost::shared_ptr<BayesNet<Conditional> > eliminate(varid_t nFrontals = 1);
|
|
|
|
/**
|
|
* Permutes the GaussianFactor, but for efficiency requires the permutation
|
|
* to already be inverted.
|
|
*/
|
|
void permuteWithInverse(const Permutation& inversePermutation);
|
|
|
|
/** iterators */
|
|
const_iterator begin() const { return keys_.begin(); }
|
|
const_iterator end() const { return keys_.end(); }
|
|
|
|
/** mutable iterators */
|
|
iterator begin() { return keys_.begin(); }
|
|
iterator end() { return keys_.end(); }
|
|
|
|
/** First key*/
|
|
varid_t front() const { return keys_.front(); }
|
|
|
|
/** Last key */
|
|
varid_t back() const { return keys_.back(); }
|
|
|
|
/** find */
|
|
const_iterator find(varid_t key) const { return std::find(begin(), end(), key); }
|
|
|
|
/** print */
|
|
void print(const std::string& s = "Factor") const;
|
|
|
|
/** check equality */
|
|
bool equals(const Factor& other, double tol = 1e-9) const;
|
|
|
|
/**
|
|
* return keys in order as created
|
|
*/
|
|
const std::vector<varid_t>& keys() const { return keys_; }
|
|
|
|
/**
|
|
* @return the number of nodes the factor connects
|
|
*/
|
|
size_t size() const { return keys_.size(); }
|
|
|
|
protected:
|
|
|
|
/** Conditional makes internal use of a Factor for storage */
|
|
friend class gtsam::Conditional;
|
|
friend class GaussianConditional;
|
|
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class Archive>
|
|
void serialize(Archive & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_NVP(keys_);
|
|
}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
inline void Factor::checkSorted() const {
|
|
#ifndef NDEBUG
|
|
for(size_t pos=1; pos<keys_.size(); ++pos)
|
|
assert(keys_[pos-1] < keys_[pos]);
|
|
#endif
|
|
}
|
|
|
|
}
|