/** * @file Factor.h * @brief A simple factor class to use in a factor graph * @brief factor * @author Kai Ni * @author Frank Dellaert */ // \callgraph #pragma once #include #include #include // for noncopyable #include #include #include #include namespace gtsam { class Conditional; /** * A simple factor class to use in a factor graph. * * We make it noncopyable so we enforce the fact that factors are * kept in pointer containers. To be safe, you should make them * immutable, i.e., practicing functional programming. However, this * conflicts with efficiency as well, esp. in the case of incomplete * QR factorization. A solution is still being sought. * * A Factor is templated on a Values, for example VectorValues is a values structure of * labeled vectors. This way, we can have factors that might be defined on discrete * variables, continuous ones, or a combination of both. It is up to the config to * provide the appropriate values at the appropriate time. */ class Factor : public Testable { protected: std::vector keys_; ValueWithDefault permuted_; /** Internal check to make sure keys are sorted (invariant during elimination). * If NDEBUG is defined, this is empty and optimized out. */ void checkSorted() const; public: typedef gtsam::Conditional Conditional; typedef boost::shared_ptr shared_ptr; typedef std::vector::iterator iterator; typedef std::vector::const_iterator const_iterator; /** Copy constructor */ Factor(const Factor& f); /** Construct from derived type */ template Factor(const Derived& c); /** Constructor from a collection of keys */ template Factor(KeyIterator beginKey, KeyIterator endKey); /** Default constructor for I/O */ Factor() : permuted_(false) {} /** Construct unary factor */ Factor(varid_t key) : keys_(1), permuted_(false) { keys_[0] = key; checkSorted(); } /** Construct binary factor */ Factor(varid_t key1, varid_t key2) : keys_(2), permuted_(false) { keys_[0] = key1; keys_[1] = key2; checkSorted(); } /** Construct ternary factor */ Factor(varid_t key1, varid_t key2, varid_t key3) : keys_(3), permuted_(false) { keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; checkSorted(); } /** Construct 4-way factor */ Factor(varid_t key1, varid_t key2, varid_t key3, varid_t key4) : keys_(4), permuted_(false) { keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; keys_[3] = key4; checkSorted(); } /** Named constructor for combining a set of factors with pre-computed set of * variables. (Old style - will be removed when scalar elimination is * removed in favor of the EliminationTree). */ template static shared_ptr Combine(const FactorGraphType& factorGraph, const VariableIndex& variableIndex, const std::vector& factors, const std::vector& variables, const std::vector >& variablePositions); /** Create a combined joint factor (new style for EliminationTree). */ template static shared_ptr Combine(const FactorGraph& factors, const std::map, std::less, MapAllocator>& variableSlots); /** * eliminate the first variable involved in this factor * @return a conditional on the eliminated variable */ boost::shared_ptr eliminateFirst(); /** * eliminate the first nFrontals frontal variables. */ boost::shared_ptr > eliminate(varid_t nFrontals = 1); /** * Permutes the GaussianFactor, but for efficiency requires the permutation * to already be inverted. */ void permuteWithInverse(const Permutation& inversePermutation); /** iterators */ const_iterator begin() const { return keys_.begin(); } const_iterator end() const { return keys_.end(); } /** mutable iterators */ iterator begin() { return keys_.begin(); } iterator end() { return keys_.end(); } /** First key*/ varid_t front() const { return keys_.front(); } /** Last key */ varid_t back() const { return keys_.back(); } /** find */ const_iterator find(varid_t key) const { return std::find(begin(), end(), key); } /** print */ void print(const std::string& s = "Factor") const; /** check equality */ bool equals(const Factor& other, double tol = 1e-9) const; /** * return keys in order as created */ const std::vector& keys() const { return keys_; } /** * @return the number of nodes the factor connects */ size_t size() const { return keys_.size(); } protected: /** Conditional makes internal use of a Factor for storage */ friend class gtsam::Conditional; friend class GaussianConditional; /** Serialization function */ friend class boost::serialization::access; template void serialize(Archive & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_NVP(keys_); } }; /* ************************************************************************* */ inline void Factor::checkSorted() const { #ifndef NDEBUG for(size_t pos=1; pos