gtsam/gtsam_unstable/nonlinear/ExpressionFactor.h

114 lines
3.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Expression.h
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief Expressions for Block Automatic Differentiation
*/
#pragma once
#include <gtsam/nonlinear/Expression.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/base/Testable.h>
#include <numeric>
namespace gtsam {
/**
* Factor that supports arbitrary expressions via AD
*/
template<class T>
class ExpressionFactor: public NoiseModelFactor {
protected:
T measurement_; ///< the measurement to be compared with the expression
Expression<T> expression_; ///< the expression that is AD enabled
FastVector<int> dims_; ///< dimensions of the Jacobian matrices
static const int Dim = traits_x<T>::dimension;
public:
/// Constructor
ExpressionFactor(const SharedNoiseModel& noiseModel, //
const T& measurement, const Expression<T>& expression) :
measurement_(measurement), expression_(expression) {
if (!noiseModel)
throw std::invalid_argument("ExpressionFactor: no NoiseModel.");
if (noiseModel->dim() != Dim)
throw std::invalid_argument(
"ExpressionFactor was created with a NoiseModel of incorrect dimension.");
noiseModel_ = noiseModel;
// Get keys and dimensions for Jacobian matrices
// An Expression is assumed unmutable, so we do this now
boost::tie(keys_, dims_) = expression_.keysAndDims();
}
/**
* Error function *without* the NoiseModel, \f$ h(x)-z \f$.
* We override this method to provide
* both the function evaluation and its derivative(s) in H.
*/
virtual Vector unwhitenedError(const Values& x,
boost::optional<std::vector<Matrix>&> H = boost::none) const {
if (H) {
const T value = expression_.value(x, keys_, dims_, *H);
return traits_x<T>::Local(measurement_, value);
} else {
const T value = expression_.value(x);
return traits_x<T>::Local(measurement_, value);
}
}
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& x) const {
// Only linearize if the factor is active
if (!active(x))
return boost::shared_ptr<JacobianFactor>();
// Create a writeable JacobianFactor in advance
// In case noise model is constrained, we need to provide a noise model
bool constrained = noiseModel_->isConstrained();
boost::shared_ptr<JacobianFactor> factor(
constrained ? new JacobianFactor(keys_, dims_, Dim,
boost::static_pointer_cast<noiseModel::Constrained>(noiseModel_)->unit()) :
new JacobianFactor(keys_, dims_, Dim));
// Wrap keys and VerticalBlockMatrix into structure passed to expression_
VerticalBlockMatrix& Ab = factor->matrixObject();
JacobianMap jacobianMap(keys_, Ab);
// Zero out Jacobian so we can simply add to it
Ab.matrix().setZero();
// Get value and Jacobians, writing directly into JacobianFactor
T value = expression_.value(x, jacobianMap); // <<< Reverse AD happens here !
// Evaluate error and set RHS vector b
Ab(size()).col(0) = -traits_x<T>::Local(measurement_, value);
// Whiten the corresponding system, Ab already contains RHS
Vector dummy(Dim);
noiseModel_->WhitenSystem(Ab.matrix(), dummy);
return factor;
}
};
// ExpressionFactor
}