473 lines
19 KiB
C++
473 lines
19 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SmartProjectionPoseFactorRollingShutter.h
|
|
* @brief Smart projection factor on poses modeling rolling shutter effect with
|
|
* given readout time
|
|
* @author Luca Carlone
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/geometry/CameraSet.h>
|
|
#include <gtsam/slam/SmartProjectionFactor.h>
|
|
#include <gtsam_unstable/dllexport.h>
|
|
|
|
namespace gtsam {
|
|
/**
|
|
*
|
|
* @ingroup slam
|
|
*
|
|
* If you are using the factor, please cite:
|
|
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert,
|
|
* Eliminating conditionally independent sets in factor graphs:
|
|
* a unifying perspective based on smart factors,
|
|
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
|
*/
|
|
|
|
/**
|
|
* This factor optimizes two consecutive poses of the body assuming a rolling
|
|
* shutter model of the camera with given readout time. The factor requires that
|
|
* values contain (for each pixel observation) two consecutive camera poses from
|
|
* which the pixel observation pose can be interpolated.
|
|
* @ingroup slam
|
|
*/
|
|
template <class CAMERA>
|
|
class SmartProjectionPoseFactorRollingShutter
|
|
: public SmartProjectionFactor<CAMERA> {
|
|
private:
|
|
typedef SmartProjectionFactor<CAMERA> Base;
|
|
typedef SmartProjectionPoseFactorRollingShutter<CAMERA> This;
|
|
typedef typename CAMERA::CalibrationType CALIBRATION;
|
|
typedef typename CAMERA::Measurement MEASUREMENT;
|
|
typedef typename CAMERA::MeasurementVector MEASUREMENTS;
|
|
|
|
protected:
|
|
/// The keys of the pose of the body (with respect to an external world
|
|
/// frame): two consecutive poses for each observation
|
|
std::vector<std::pair<Key, Key>> world_P_body_key_pairs_;
|
|
|
|
/// interpolation factor (one for each observation) to interpolate between
|
|
/// pair of consecutive poses
|
|
std::vector<double> alphas_;
|
|
|
|
/// one or more cameras taking observations (fixed poses wrt body + fixed
|
|
/// intrinsics)
|
|
std::shared_ptr<typename Base::Cameras> cameraRig_;
|
|
|
|
/// vector of camera Ids (one for each observation, in the same order),
|
|
/// identifying which camera took the measurement
|
|
FastVector<size_t> cameraIds_;
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
static const int DimBlock =
|
|
12; ///< size of the variable stacking 2 poses from which the observation
|
|
///< pose is interpolated
|
|
static const int DimPose = 6; ///< Pose3 dimension
|
|
static const int ZDim = 2; ///< Measurement dimension (Point2)
|
|
typedef Eigen::Matrix<double, ZDim, DimBlock>
|
|
MatrixZD; // F blocks (derivatives wrt block of 2 poses)
|
|
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>>
|
|
FBlocks; // vector of F blocks
|
|
|
|
typedef CAMERA Camera;
|
|
typedef CameraSet<CAMERA> Cameras;
|
|
|
|
/// shorthand for a smart pointer to a factor
|
|
typedef std::shared_ptr<This> shared_ptr;
|
|
|
|
/// Default constructor, only for serialization
|
|
SmartProjectionPoseFactorRollingShutter() {}
|
|
|
|
/**
|
|
* Constructor
|
|
* @param Isotropic measurement noise
|
|
* @param cameraRig set of cameras (fixed poses wrt body and intrinsics)
|
|
* taking the measurements
|
|
* @param params internal parameters of the smart factors
|
|
*/
|
|
SmartProjectionPoseFactorRollingShutter(
|
|
const SharedNoiseModel& sharedNoiseModel,
|
|
const std::shared_ptr<Cameras>& cameraRig,
|
|
const SmartProjectionParams& params = SmartProjectionParams())
|
|
: Base(sharedNoiseModel, params), cameraRig_(cameraRig) {
|
|
// throw exception if configuration is not supported by this factor
|
|
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
|
|
throw std::runtime_error(
|
|
"SmartProjectionRigFactor: "
|
|
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
|
|
if (Base::params_.linearizationMode != gtsam::HESSIAN)
|
|
throw std::runtime_error(
|
|
"SmartProjectionRigFactor: "
|
|
"linearizationMode must be set to HESSIAN");
|
|
}
|
|
|
|
/**
|
|
* add a new measurement, with 2 pose keys, interpolation factor, and cameraId
|
|
* @param measured 2-dimensional location of the projection of a single
|
|
* landmark in a single view (the measurement), interpolated from the 2 poses
|
|
* @param world_P_body_key1 key corresponding to the first body poses (time <=
|
|
* time pixel is acquired)
|
|
* @param world_P_body_key2 key corresponding to the second body poses (time
|
|
* >= time pixel is acquired)
|
|
* @param alpha interpolation factor in [0,1], such that if alpha = 0 the
|
|
* interpolated pose is the same as world_P_body_key1
|
|
* @param cameraId ID of the camera taking the measurement (default 0)
|
|
*/
|
|
void add(const MEASUREMENT& measured, const Key& world_P_body_key1,
|
|
const Key& world_P_body_key2, const double& alpha,
|
|
const size_t& cameraId = 0) {
|
|
// store measurements in base class
|
|
this->measured_.push_back(measured);
|
|
|
|
// store the pair of keys for each measurement, in the same order
|
|
world_P_body_key_pairs_.push_back(
|
|
std::make_pair(world_P_body_key1, world_P_body_key2));
|
|
|
|
// also store keys in the keys_ vector: these keys are assumed to be
|
|
// unique, so we avoid duplicates here
|
|
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1) ==
|
|
this->keys_.end())
|
|
this->keys_.push_back(world_P_body_key1); // add only unique keys
|
|
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2) ==
|
|
this->keys_.end())
|
|
this->keys_.push_back(world_P_body_key2); // add only unique keys
|
|
|
|
// store interpolation factor
|
|
alphas_.push_back(alpha);
|
|
|
|
// store id of the camera taking the measurement
|
|
cameraIds_.push_back(cameraId);
|
|
}
|
|
|
|
/**
|
|
* Variant of the previous "add" function in which we include multiple
|
|
* measurements
|
|
* @param measurements vector of the 2m dimensional location of the projection
|
|
* of a single landmark in the m views (the measurements)
|
|
* @param world_P_body_key_pairs vector where the i-th element contains a pair
|
|
* of keys corresponding to the pair of poses from which the observation pose
|
|
* for the i0-th measurement can be interpolated
|
|
* @param alphas vector of interpolation params (in [0,1]), one for each
|
|
* measurement (in the same order)
|
|
* @param cameraIds IDs of the cameras taking each measurement (same order as
|
|
* the measurements)
|
|
*/
|
|
void add(const MEASUREMENTS& measurements,
|
|
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
|
|
const std::vector<double>& alphas,
|
|
const FastVector<size_t>& cameraIds = FastVector<size_t>()) {
|
|
if (world_P_body_key_pairs.size() != measurements.size() ||
|
|
world_P_body_key_pairs.size() != alphas.size() ||
|
|
(world_P_body_key_pairs.size() != cameraIds.size() &&
|
|
cameraIds.size() != 0)) { // cameraIds.size()=0 is default
|
|
throw std::runtime_error(
|
|
"SmartProjectionPoseFactorRollingShutter: "
|
|
"trying to add inconsistent inputs");
|
|
}
|
|
if (cameraIds.size() == 0 && cameraRig_->size() > 1) {
|
|
throw std::runtime_error(
|
|
"SmartProjectionPoseFactorRollingShutter: "
|
|
"camera rig includes multiple camera "
|
|
"but add did not input cameraIds");
|
|
}
|
|
for (size_t i = 0; i < measurements.size(); i++) {
|
|
add(measurements[i], world_P_body_key_pairs[i].first,
|
|
world_P_body_key_pairs[i].second, alphas[i],
|
|
cameraIds.size() == 0 ? 0
|
|
: cameraIds[i]); // use 0 as default if
|
|
// cameraIds was not specified
|
|
}
|
|
}
|
|
|
|
/// return (for each observation) the keys of the pair of poses from which we
|
|
/// interpolate
|
|
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs() const {
|
|
return world_P_body_key_pairs_;
|
|
}
|
|
|
|
/// return the interpolation factors alphas
|
|
const std::vector<double>& alphas() const { return alphas_; }
|
|
|
|
/// return the calibration object
|
|
const std::shared_ptr<Cameras>& cameraRig() const { return cameraRig_; }
|
|
|
|
/// return the calibration object
|
|
const FastVector<size_t>& cameraIds() const { return cameraIds_; }
|
|
|
|
/**
|
|
* print
|
|
* @param s optional string naming the factor
|
|
* @param keyFormatter optional formatter useful for printing Symbols
|
|
*/
|
|
void print(
|
|
const std::string& s = "",
|
|
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
|
std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
|
|
for (size_t i = 0; i < cameraIds_.size(); i++) {
|
|
std::cout << "-- Measurement nr " << i << std::endl;
|
|
std::cout << " pose1 key: "
|
|
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
|
|
std::cout << " pose2 key: "
|
|
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
|
|
std::cout << " alpha: " << alphas_[i] << std::endl;
|
|
std::cout << "cameraId: " << cameraIds_[i] << std::endl;
|
|
(*cameraRig_)[cameraIds_[i]].print("camera in rig:\n");
|
|
}
|
|
Base::print("", keyFormatter);
|
|
}
|
|
|
|
/// equals
|
|
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
|
|
const SmartProjectionPoseFactorRollingShutter<CAMERA>* e =
|
|
dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CAMERA>*>(
|
|
&p);
|
|
|
|
double keyPairsEqual = true;
|
|
if (this->world_P_body_key_pairs_.size() ==
|
|
e->world_P_body_key_pairs().size()) {
|
|
for (size_t k = 0; k < this->world_P_body_key_pairs_.size(); k++) {
|
|
const Key key1own = world_P_body_key_pairs_[k].first;
|
|
const Key key1e = e->world_P_body_key_pairs()[k].first;
|
|
const Key key2own = world_P_body_key_pairs_[k].second;
|
|
const Key key2e = e->world_P_body_key_pairs()[k].second;
|
|
if (!(key1own == key1e) || !(key2own == key2e)) {
|
|
keyPairsEqual = false;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
keyPairsEqual = false;
|
|
}
|
|
|
|
return e && Base::equals(p, tol) && alphas_ == e->alphas() &&
|
|
keyPairsEqual && cameraRig_->equals(*(e->cameraRig())) &&
|
|
std::equal(cameraIds_.begin(), cameraIds_.end(),
|
|
e->cameraIds().begin());
|
|
}
|
|
|
|
/**
|
|
* Collect all cameras involved in this factor
|
|
* @param values Values structure which must contain camera poses
|
|
* corresponding to keys involved in this factor
|
|
* @return Cameras
|
|
*/
|
|
typename Base::Cameras cameras(const Values& values) const override {
|
|
typename Base::Cameras cameras;
|
|
for (size_t i = 0; i < this->measured_.size();
|
|
i++) { // for each measurement
|
|
const Pose3& w_P_body1 =
|
|
values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
|
const Pose3& w_P_body2 =
|
|
values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
|
double interpolationFactor = alphas_[i];
|
|
const Pose3& w_P_body =
|
|
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
|
|
const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]];
|
|
const Pose3& body_P_cam = camera_i.pose();
|
|
const Pose3& w_P_cam = w_P_body.compose(body_P_cam);
|
|
cameras.emplace_back(w_P_cam,
|
|
make_shared<typename CAMERA::CalibrationType>(
|
|
camera_i.calibration()));
|
|
}
|
|
return cameras;
|
|
}
|
|
|
|
/**
|
|
* error calculates the error of the factor.
|
|
*/
|
|
double error(const Values& values) const override {
|
|
if (this->active(values)) {
|
|
return this->totalReprojectionError(this->cameras(values));
|
|
} else { // else of active flag
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute jacobian F, E and error vector at a given linearization point
|
|
* @param values Values structure which must contain camera poses
|
|
* corresponding to keys involved in this factor
|
|
* @return Return arguments are the camera jacobians Fs (including the
|
|
* jacobian with respect to both body poses we interpolate from), the point
|
|
* Jacobian E, and the error vector b. Note that the jacobians are computed
|
|
* for a given point.
|
|
*/
|
|
void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b,
|
|
const Values& values) const {
|
|
if (!this->result_) {
|
|
throw("computeJacobiansWithTriangulatedPoint");
|
|
} else { // valid result: compute jacobians
|
|
size_t numViews = this->measured_.size();
|
|
E = Matrix::Zero(2 * numViews,
|
|
3); // a Point2 for each view (point jacobian)
|
|
b = Vector::Zero(2 * numViews); // a Point2 for each view
|
|
// intermediate Jacobians
|
|
Eigen::Matrix<double, ZDim, DimPose> dProject_dPoseCam;
|
|
Eigen::Matrix<double, DimPose, DimPose> dInterpPose_dPoseBody1,
|
|
dInterpPose_dPoseBody2, dPoseCam_dInterpPose;
|
|
Eigen::Matrix<double, ZDim, 3> Ei;
|
|
|
|
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
|
auto w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
|
auto w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
|
double interpolationFactor = alphas_[i];
|
|
// get interpolated pose:
|
|
auto w_P_body =
|
|
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor,
|
|
dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
|
|
const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]];
|
|
auto body_P_cam = camera_i.pose();
|
|
auto w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
|
|
typename Base::Camera camera(
|
|
w_P_cam, make_shared<typename CAMERA::CalibrationType>(
|
|
camera_i.calibration()));
|
|
|
|
// get jacobians and error vector for current measurement
|
|
Point2 reprojectionError_i = camera.reprojectionError(
|
|
*this->result_, this->measured_.at(i), dProject_dPoseCam, Ei);
|
|
Eigen::Matrix<double, ZDim, DimBlock> J; // 2 x 12
|
|
J.block(0, 0, ZDim, 6) =
|
|
dProject_dPoseCam * dPoseCam_dInterpPose *
|
|
dInterpPose_dPoseBody1; // (2x6) * (6x6) * (6x6)
|
|
J.block(0, 6, ZDim, 6) =
|
|
dProject_dPoseCam * dPoseCam_dInterpPose *
|
|
dInterpPose_dPoseBody2; // (2x6) * (6x6) * (6x6)
|
|
|
|
// fit into the output structures
|
|
Fs.push_back(J);
|
|
size_t row = 2 * i;
|
|
b.segment<ZDim>(row) = -reprojectionError_i;
|
|
E.block<ZDim, 3>(row, 0) = Ei;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
|
std::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor(
|
|
const Values& values, const double& lambda = 0.0,
|
|
bool diagonalDamping = false) const {
|
|
// we may have multiple observation sharing the same keys (due to the
|
|
// rolling shutter interpolation), hence the number of unique keys may be
|
|
// smaller than 2 * nrMeasurements
|
|
size_t nrUniqueKeys =
|
|
this->keys_
|
|
.size(); // note: by construction, keys_ only contains unique keys
|
|
|
|
typename Base::Cameras cameras = this->cameras(values);
|
|
|
|
// Create structures for Hessian Factors
|
|
KeyVector js;
|
|
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
|
std::vector<Vector> gs(nrUniqueKeys);
|
|
|
|
if (this->measured_.size() !=
|
|
cameras.size()) // 1 observation per interpolated camera
|
|
throw std::runtime_error(
|
|
"SmartProjectionPoseFactorRollingShutter: "
|
|
"measured_.size() inconsistent with input");
|
|
|
|
// triangulate 3D point at given linearization point
|
|
this->triangulateSafe(cameras);
|
|
|
|
if (!this->result_) { // failed: return "empty/zero" Hessian
|
|
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
|
|
for (Matrix& m : Gs) m = Matrix::Zero(DimPose, DimPose);
|
|
for (Vector& v : gs) v = Vector::Zero(DimPose);
|
|
return std::make_shared<RegularHessianFactor<DimPose>>(this->keys_,
|
|
Gs, gs, 0.0);
|
|
} else {
|
|
throw std::runtime_error(
|
|
"SmartProjectionPoseFactorRollingShutter: "
|
|
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
|
|
}
|
|
}
|
|
// compute Jacobian given triangulated 3D Point
|
|
FBlocks Fs;
|
|
Matrix E;
|
|
Vector b;
|
|
this->computeJacobiansWithTriangulatedPoint(Fs, E, b, values);
|
|
|
|
// Whiten using noise model
|
|
this->noiseModel_->WhitenSystem(E, b);
|
|
for (size_t i = 0; i < Fs.size(); i++)
|
|
Fs[i] = this->noiseModel_->Whiten(Fs[i]);
|
|
|
|
Matrix3 P = Cameras::PointCov(E, lambda, diagonalDamping);
|
|
|
|
// Collect all the key pairs: these are the keys that correspond to the
|
|
// blocks in Fs (on which we apply the Schur Complement)
|
|
KeyVector nonuniqueKeys;
|
|
for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) {
|
|
nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i).first);
|
|
nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i).second);
|
|
}
|
|
|
|
// Build augmented Hessian (with last row/column being the information
|
|
// vector) Note: we need to get the augumented hessian wrt the unique keys
|
|
// in key_
|
|
SymmetricBlockMatrix augmentedHessianUniqueKeys =
|
|
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 12, 6>(
|
|
Fs, E, P, b, nonuniqueKeys, this->keys_);
|
|
|
|
return std::make_shared<RegularHessianFactor<DimPose>>(
|
|
this->keys_, augmentedHessianUniqueKeys);
|
|
}
|
|
|
|
/**
|
|
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for
|
|
* LM)
|
|
* @param values Values structure which must contain camera poses and
|
|
* extrinsic pose for this factor
|
|
* @return a Gaussian factor
|
|
*/
|
|
std::shared_ptr<GaussianFactor> linearizeDamped(
|
|
const Values& values, const double& lambda = 0.0) const {
|
|
// depending on flag set on construction we may linearize to different
|
|
// linear factors
|
|
switch (this->params_.linearizationMode) {
|
|
case HESSIAN:
|
|
return this->createHessianFactor(values, lambda);
|
|
default:
|
|
throw std::runtime_error(
|
|
"SmartProjectionPoseFactorRollingShutter: "
|
|
"unknown linearization mode");
|
|
}
|
|
}
|
|
|
|
/// linearize
|
|
std::shared_ptr<GaussianFactor> linearize(
|
|
const Values& values) const override {
|
|
return this->linearizeDamped(values);
|
|
}
|
|
|
|
private:
|
|
#if GTSAM_ENABLE_BOOST_SERIALIZATION ///
|
|
/// Serialization function
|
|
friend class boost::serialization::access;
|
|
template <class ARCHIVE>
|
|
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
|
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
|
}
|
|
#endif
|
|
};
|
|
// end of class declaration
|
|
|
|
/// traits
|
|
template <class CAMERA>
|
|
struct traits<SmartProjectionPoseFactorRollingShutter<CAMERA>>
|
|
: public Testable<SmartProjectionPoseFactorRollingShutter<CAMERA>> {};
|
|
|
|
} // namespace gtsam
|