Merge branch 'feature/heterogeneousSmartFactorNoise' into feature/improvementsIncrementalFilter

release/4.3a0
lcarlone 2016-08-05 00:04:20 -04:00
commit fc799abad7
7 changed files with 425 additions and 110 deletions

View File

@ -2862,6 +2862,14 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testBatchFixedLagSmoother.run" path="build/gtsam_unstable/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j4</buildArguments>
<buildTarget>testBatchFixedLagSmoother.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testGaussianFactor.run" path="build/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>

View File

@ -56,7 +56,11 @@ protected:
// Project and fill error vector
Vector b(ZDim * m);
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
b.segment<ZDim>(row) = traits<Z>::Local(measured[i], predicted[i]);
Vector bi = traits<Z>::Local(measured[i], predicted[i]);
if(ZDim==3 && std::isnan(bi(1))){ // if it is a stereo point and the right pixel is missing (nan)
bi(1) = 0;
}
b.segment<ZDim>(row) = bi;
}
return b;
}

View File

@ -35,6 +35,16 @@
namespace gtsam {
/// Linearization mode: what factor to linearize to
enum LinearizationMode {
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
};
/// How to manage degeneracy
enum DegeneracyMode {
IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
};
/**
* @brief Base class for smart factors
* This base class has no internal point, but it has a measurement, noise model
@ -202,7 +212,7 @@ public:
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, //
boost::optional<Matrix&> E = boost::none) const {
Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
if(body_P_sensor_){
if(body_P_sensor_ && Fs){
for(size_t i=0; i < Fs->size(); i++){
Pose3 w_Pose_body = (cameras[i].pose()).compose(body_P_sensor_->inverse());
Matrix J(6, 6);
@ -210,9 +220,17 @@ public:
Fs->at(i) = Fs->at(i) * J;
}
}
correctForMissingMeasurements(cameras, ue, Fs, E);
return ue;
}
/**
* This corrects the Jacobians for the case in which some pixel measurement is missing (nan)
* In practice, this does not do anything in the monocular case, but it is implemented in the stereo version
*/
virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue, boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const {}
/**
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z]
* Noise model applied

View File

@ -31,16 +31,6 @@
namespace gtsam {
/// Linearization mode: what factor to linearize to
enum LinearizationMode {
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
};
/// How to manage degeneracy
enum DegeneracyMode {
IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
};
/*
* Parameters for the smart projection factors
*/

View File

@ -35,16 +35,6 @@
namespace gtsam {
/// Linearization mode: what factor to linearize to
enum LinearizationMode {
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
};
/// How to manage degeneracy
enum DegeneracyMode {
IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
};
/*
* Parameters for the smart stereo projection factors
*/
@ -119,8 +109,6 @@ enum DegeneracyMode {
}
};
/**
* SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around.
* This factor operates with StereoCamera. This factor requires that values
@ -155,14 +143,19 @@ public:
/// Vector of cameras
typedef CameraSet<StereoCamera> Cameras;
/// Vector of monocular cameras (stereo treated as 2 monocular)
typedef PinholeCamera<Cal3_S2> MonoCamera;
typedef CameraSet<MonoCamera> MonoCameras;
typedef std::vector<Point2> MonoMeasurements;
/**
* Constructor
* @param params internal parameters of the smart factors
*/
SmartStereoProjectionFactor(const SharedNoiseModel& sharedNoiseModel,
const SmartStereoProjectionParams& params =
SmartStereoProjectionParams()) :
Base(sharedNoiseModel), //
const SmartStereoProjectionParams& params = SmartStereoProjectionParams(),
const boost::optional<Pose3> body_P_sensor = boost::none) :
Base(sharedNoiseModel, body_P_sensor), //
params_(params), //
result_(TriangulationResult::Degenerate()) {
}
@ -240,77 +233,30 @@ public:
size_t m = cameras.size();
bool retriangulate = decideIfTriangulate(cameras);
// if(!retriangulate)
// std::cout << "retriangulate = false" << std::endl;
//
// bool retriangulate = true;
if (retriangulate) {
// std::cout << "Retriangulate " << std::endl;
std::vector<Point3> reprojections;
reprojections.reserve(m);
// triangulate stereo measurements by treating each stereocamera as a pair of monocular cameras
MonoCameras monoCameras;
MonoMeasurements monoMeasured;
for(size_t i = 0; i < m; i++) {
reprojections.push_back(cameras[i].backproject(measured_[i]));
const Pose3 leftPose = cameras[i].pose();
const Cal3_S2 monoCal = cameras[i].calibration().calibration();
const MonoCamera leftCamera_i(leftPose,monoCal);
const Pose3 left_Pose_right = Pose3(Rot3(),Point3(cameras[i].baseline(),0.0,0.0));
const Pose3 rightPose = leftPose.compose( left_Pose_right );
const MonoCamera rightCamera_i(rightPose,monoCal);
const StereoPoint2 zi = measured_[i];
monoCameras.push_back(leftCamera_i);
monoMeasured.push_back(Point2(zi.uL(),zi.v()));
if(!std::isnan(zi.uR())){ // if right point is valid
monoCameras.push_back(rightCamera_i);
monoMeasured.push_back(Point2(zi.uR(),zi.v()));
}
Point3 pw_sum(0,0,0);
for(const Point3& pw: reprojections) {
pw_sum = pw_sum + pw;
}
// average reprojected landmark
Point3 pw_avg = pw_sum / double(m);
double totalReprojError = 0;
// check if it lies in front of all cameras
for(size_t i = 0; i < m; i++) {
const Pose3& pose = cameras[i].pose();
const Point3& pl = pose.transform_to(pw_avg);
if (pl.z() <= 0) {
result_ = TriangulationResult::BehindCamera();
if (retriangulate)
result_ = gtsam::triangulateSafe(monoCameras, monoMeasured,
params_.triangulation);
return result_;
}
// check landmark distance
if (params_.triangulation.landmarkDistanceThreshold > 0 &&
pl.norm() > params_.triangulation.landmarkDistanceThreshold) {
result_ = TriangulationResult::FarPoint();
return result_;
}
if (params_.triangulation.dynamicOutlierRejectionThreshold > 0) {
const StereoPoint2& zi = measured_[i];
StereoPoint2 reprojectionError(cameras[i].project(pw_avg) - zi);
totalReprojError += reprojectionError.vector().norm();
}
} // for
if (params_.triangulation.dynamicOutlierRejectionThreshold > 0
&& totalReprojError / m > params_.triangulation.dynamicOutlierRejectionThreshold) {
result_ = TriangulationResult::Outlier();
return result_;
}
if(params_.triangulation.enableEPI) {
try {
pw_avg = triangulateNonlinear(cameras, measured_, pw_avg);
} catch(StereoCheiralityException& e) {
if(params_.verboseCheirality)
std::cout << "Cheirality Exception in SmartStereoProjectionFactor" << std::endl;
if(params_.throwCheirality)
throw;
result_ = TriangulationResult::BehindCamera();
return TriangulationResult::BehindCamera();
}
}
result_ = TriangulationResult(pw_avg);
} // if retriangulate
return result_;
}
/// triangulate
bool triangulateForLinearize(const Cameras& cameras) const {
triangulateSafe(cameras); // imperative, might reset result_
@ -570,6 +516,32 @@ public:
}
}
/**
* This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
*/
virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const
{
// when using stereo cameras, some of the measurements might be missing:
for(size_t i=0; i < cameras.size(); i++){
const StereoPoint2& z = measured_.at(i);
if(std::isnan(z.uR())) // if the right pixel is invalid
{
if(Fs){ // delete influence of right point on jacobian Fs
MatrixZD& Fi = Fs->at(i);
for(size_t ii=0; ii<Dim; ii++)
Fi(1,ii) = 0.0;
}
if(E) // delete influence of right point on jacobian E
E->row(ZDim * i + 1) = Matrix::Zero(1, E->cols());
// set the corresponding entry of vector ue to zero
ue(ZDim * i + 1) = 0.0;
}
}
}
/** return the landmark */
TriangulationResult point() const {
return result_;

View File

@ -66,9 +66,9 @@ public:
* @param params internal parameters of the smart factors
*/
SmartStereoProjectionPoseFactor(const SharedNoiseModel& sharedNoiseModel,
const SmartStereoProjectionParams& params =
SmartStereoProjectionParams()) :
Base(sharedNoiseModel, params) {
const SmartStereoProjectionParams& params = SmartStereoProjectionParams(),
const boost::optional<Pose3> body_P_sensor = boost::none) :
Base(sharedNoiseModel, params, body_P_sensor) {
}
/** Virtual destructor */
@ -102,7 +102,7 @@ public:
/**
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
* @param mmeasurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param measurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
* @param K the (known) camera calibration (same for all measurements)
*/
@ -161,7 +161,11 @@ public:
Base::Cameras cameras;
size_t i=0;
for(const Key& k: this->keys_) {
const Pose3& pose = values.at<Pose3>(k);
Pose3 pose = values.at<Pose3>(k);
if (Base::body_P_sensor_)
pose = pose.compose(*(Base::body_P_sensor_));
StereoCamera camera(pose, K_all_[i++]);
cameras.push_back(camera);
}

View File

@ -18,7 +18,7 @@
* @date Sept 2013
*/
// TODO #include <gtsam/slam/tests/smartFactorScenarios.h>
#include <gtsam/slam/tests/smartFactorScenarios.h>
#include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/PoseTranslationPrior.h>
@ -33,8 +33,6 @@ using namespace boost::assign;
using namespace gtsam;
// make a realistic calibration matrix
static double fov = 60; // degrees
static size_t w = 640, h = 480;
static double b = 1;
static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
@ -62,6 +60,8 @@ static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more re
static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
Point3(0.25, -0.10, 1.0));
static double missing_uR = std::numeric_limits<double>::quiet_NaN();
vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
@ -151,6 +151,60 @@ TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
//EXPECT(assert_equal(zero(4),actual,1e-8));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, noiselessWithMissingMeasurements ) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
Point3(0, 0, 1));
StereoCamera level_camera(level_pose, K2);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera level_camera_right(level_pose_right, K2);
// landmark ~5 meters in front of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
StereoPoint2 level_uv = level_camera.project(landmark);
StereoPoint2 level_uv_right = level_camera_right.project(landmark);
StereoPoint2 level_uv_right_missing(level_uv_right.uL(),missing_uR,level_uv_right.v());
Values values;
values.insert(x1, level_pose);
values.insert(x2, level_pose_right);
SmartStereoProjectionPoseFactor factor1(model);
factor1.add(level_uv, x1, K2);
factor1.add(level_uv_right_missing, x2, K2);
double actualError = factor1.error(values);
double expectedError = 0.0;
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
// TEST TRIANGULATION WITH MISSING VALUES: i) right pixel of second camera is missing:
SmartStereoProjectionPoseFactor::Cameras cameras = factor1.cameras(values);
double actualError2 = factor1.totalReprojectionError(cameras);
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
CameraSet<StereoCamera> cams;
cams += level_camera;
cams += level_camera_right;
TriangulationResult result = factor1.triangulateSafe(cams);
CHECK(result);
EXPECT(assert_equal(landmark, *result, 1e-7));
// TEST TRIANGULATION WITH MISSING VALUES: ii) right pixels of both cameras are missing:
SmartStereoProjectionPoseFactor factor2(model);
StereoPoint2 level_uv_missing(level_uv.uL(),missing_uR,level_uv.v());
factor2.add(level_uv_missing, x1, K2);
factor2.add(level_uv_right_missing, x2, K2);
result = factor2.triangulateSafe(cams);
CHECK(result);
EXPECT(assert_equal(landmark, *result, 1e-7));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, noisy ) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
@ -248,8 +302,6 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
@ -273,7 +325,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph.error(values), 1e-7);
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error
// get triangulated landmarks from smart factors
Point3 landmark1_smart = *smartFactor1->point();
@ -335,7 +387,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph2.error(values), 1e-7);
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
Values result2 = optimizer2.optimize();
@ -344,7 +396,192 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, body_P_sensor ) {
// camera has some displacement
Pose3 body_P_sensor = Pose3(Rot3::Ypr(-0.01, 0., -0.05), Point3(0.1, 0, 0.1));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1.compose(body_P_sensor), K2);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera cam2(pose2.compose(body_P_sensor), K2);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
StereoCamera cam3(pose3.compose(body_P_sensor), K2);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
// 1. Project three landmarks into three cameras and triangulate
vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark2);
vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
SmartStereoProjectionParams smart_params;
smart_params.triangulation.enableEPI = true;
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
smartFactor1->add(measurements_l1, views, K2);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
smartFactor2->add(measurements_l2, views, K2);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
smartFactor3->add(measurements_l3, views, K2);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
// initialize third pose with some noise, we expect it to move back to original pose3
values.insert(x3, pose3 * noise_pose);
EXPECT(
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
EXPECT_DOUBLES_EQUAL(953392.32838422502, graph.error(values), 1e-7); // initial error
Values result;
gttic_(SmartStereoProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
gttoc_(SmartStereoProjectionPoseFactor);
tictoc_finishedIteration_();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
// result.print("results of 3 camera, 3 landmark optimization \n");
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, body_P_sensor_monocular ){
// make a realistic calibration matrix
double fov = 60; // degrees
size_t w=640,h=480;
Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 cameraPose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // body poses
Pose3 cameraPose2 = cameraPose1 * Pose3(Rot3(), Point3(1,0,0));
Pose3 cameraPose3 = cameraPose1 * Pose3(Rot3(), Point3(0,-1,0));
SimpleCamera cam1(cameraPose1, *K); // with camera poses
SimpleCamera cam2(cameraPose2, *K);
SimpleCamera cam3(cameraPose3, *K);
// create arbitrary body_Pose_sensor (transforms from sensor to body)
Pose3 sensor_to_body = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(1, 1, 1)); // Pose3(); //
// These are the poses we want to estimate, from camera measurements
Pose3 bodyPose1 = cameraPose1.compose(sensor_to_body.inverse());
Pose3 bodyPose2 = cameraPose2.compose(sensor_to_body.inverse());
Pose3 bodyPose3 = cameraPose3.compose(sensor_to_body.inverse());
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(5, 0, 3.0);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
// Create smart factors
std::vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// convert measurement to (degenerate) stereoPoint2 (with right pixel being NaN)
vector<StereoPoint2> measurements_cam1_stereo, measurements_cam2_stereo, measurements_cam3_stereo;
for(size_t k=0; k<measurements_cam1.size();k++)
measurements_cam1_stereo.push_back(StereoPoint2(measurements_cam1[k].x() , missing_uR , measurements_cam1[k].y()));
for(size_t k=0; k<measurements_cam2.size();k++)
measurements_cam2_stereo.push_back(StereoPoint2(measurements_cam2[k].x() , missing_uR , measurements_cam2[k].y()));
for(size_t k=0; k<measurements_cam3.size();k++)
measurements_cam3_stereo.push_back(StereoPoint2(measurements_cam3[k].x() , missing_uR , measurements_cam3[k].y()));
SmartStereoProjectionParams params;
params.setRankTolerance(1.0);
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
params.setEnableEPI(false);
Cal3_S2Stereo::shared_ptr Kmono(new Cal3_S2Stereo(fov,w,h,b));
SmartStereoProjectionPoseFactor smartFactor1(model, params, sensor_to_body);
smartFactor1.add(measurements_cam1_stereo, views, Kmono);
SmartStereoProjectionPoseFactor smartFactor2(model, params, sensor_to_body);
smartFactor2.add(measurements_cam2_stereo, views, Kmono);
SmartStereoProjectionPoseFactor smartFactor3(model, params, sensor_to_body);
smartFactor3.add(measurements_cam3_stereo, views, Kmono);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// Put all factors in factor graph, adding priors
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, bodyPose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, bodyPose2, noisePrior));
// Check errors at ground truth poses
Values gtValues;
gtValues.insert(x1, bodyPose1);
gtValues.insert(x2, bodyPose2);
gtValues.insert(x3, bodyPose3);
double actualError = graph.error(gtValues);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
Values values;
values.insert(x1, bodyPose1);
values.insert(x2, bodyPose2);
// initialize third pose with some noise, we expect it to move back to original pose3
values.insert(x3, bodyPose3*noise_pose);
LevenbergMarquardtParams lmParams;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(bodyPose3,result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
@ -411,6 +648,78 @@ TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, jacobianSVDwithMissingValues ) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera cam2(pose2, K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
StereoCamera cam3(pose3, K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
// 1. Project three landmarks into three cameras and triangulate
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark2);
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
// DELETE SOME MEASUREMENTS
StereoPoint2 sp = measurements_cam1[1];
measurements_cam1[1] = StereoPoint2(sp.uL(), missing_uR, sp.v());
sp = measurements_cam2[2];
measurements_cam2[2] = StereoPoint2(sp.uL(), missing_uR, sp.v());
SmartStereoProjectionParams params;
params.setLinearizationMode(JACOBIAN_SVD);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1( new SmartStereoProjectionPoseFactor(model, params));
smartFactor1->add(measurements_cam1, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
smartFactor2->add(measurements_cam2, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
smartFactor3->add(measurements_cam3, views, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3 * noise_pose);
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
EXPECT(assert_equal(pose3, result.at<Pose3>(x3),1e-7));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
@ -562,7 +871,7 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
// dynamic outlier rejection is off
EXPECT_DOUBLES_EQUAL(6700, smartFactor4b->error(values), 1e-9);
EXPECT_DOUBLES_EQUAL(6147.3947317473921, smartFactor4b->error(values), 1e-9);
// Factors 1-3 should have valid point, factor 4 should not
EXPECT(smartFactor1->point());
@ -1039,7 +1348,7 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationNonDegenerate ) {
vector<Key> views;
views.push_back(x1);
@ -1072,6 +1381,9 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
values);
// check that it is non degenerate
EXPECT(smartFactor->isValid());
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
@ -1082,6 +1394,9 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
rotValues);
// check that it is non degenerate
EXPECT(smartFactor->isValid());
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
@ -1098,10 +1413,14 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
smartFactor->linearize(tranValues);
// Hessian is invariant to rotations and translations in the nondegenerate case
// Hessian is invariant to rotations and translations in the degenerate case
EXPECT(
assert_equal(hessianFactor->information(),
#ifdef GTSAM_USE_EIGEN_MKL
hessianFactorRotTran->information(), 1e-5));
#else
hessianFactorRotTran->information(), 1e-6));
#endif
}
/* ************************************************************************* */