diff --git a/.cproject b/.cproject
index 137f96e4d..ed9f7c34a 100644
--- a/.cproject
+++ b/.cproject
@@ -2862,6 +2862,14 @@
true
true
+
+ make
+ -j4
+ testBatchFixedLagSmoother.run
+ true
+ true
+ true
+
make
-j2
diff --git a/gtsam/geometry/CameraSet.h b/gtsam/geometry/CameraSet.h
index b322a40ab..18f311a23 100644
--- a/gtsam/geometry/CameraSet.h
+++ b/gtsam/geometry/CameraSet.h
@@ -56,7 +56,11 @@ protected:
// Project and fill error vector
Vector b(ZDim * m);
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
- b.segment(row) = traits::Local(measured[i], predicted[i]);
+ Vector bi = traits::Local(measured[i], predicted[i]);
+ if(ZDim==3 && std::isnan(bi(1))){ // if it is a stereo point and the right pixel is missing (nan)
+ bi(1) = 0;
+ }
+ b.segment(row) = bi;
}
return b;
}
diff --git a/gtsam/slam/SmartFactorBase.h b/gtsam/slam/SmartFactorBase.h
index 93d2ff218..57a53daa3 100644
--- a/gtsam/slam/SmartFactorBase.h
+++ b/gtsam/slam/SmartFactorBase.h
@@ -35,6 +35,16 @@
namespace gtsam {
+/// Linearization mode: what factor to linearize to
+enum LinearizationMode {
+ HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
+};
+
+/// How to manage degeneracy
+enum DegeneracyMode {
+ IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
+};
+
/**
* @brief Base class for smart factors
* This base class has no internal point, but it has a measurement, noise model
@@ -202,7 +212,7 @@ public:
boost::optional Fs = boost::none, //
boost::optional E = boost::none) const {
Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
- if(body_P_sensor_){
+ if(body_P_sensor_ && Fs){
for(size_t i=0; i < Fs->size(); i++){
Pose3 w_Pose_body = (cameras[i].pose()).compose(body_P_sensor_->inverse());
Matrix J(6, 6);
@@ -210,9 +220,17 @@ public:
Fs->at(i) = Fs->at(i) * J;
}
}
+ correctForMissingMeasurements(cameras, ue, Fs, E);
return ue;
}
+ /**
+ * This corrects the Jacobians for the case in which some pixel measurement is missing (nan)
+ * In practice, this does not do anything in the monocular case, but it is implemented in the stereo version
+ */
+ virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue, boost::optional Fs = boost::none,
+ boost::optional E = boost::none) const {}
+
/**
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z]
* Noise model applied
diff --git a/gtsam/slam/SmartProjectionFactor.h b/gtsam/slam/SmartProjectionFactor.h
index d34ba11e3..b015f1d7d 100644
--- a/gtsam/slam/SmartProjectionFactor.h
+++ b/gtsam/slam/SmartProjectionFactor.h
@@ -31,16 +31,6 @@
namespace gtsam {
-/// Linearization mode: what factor to linearize to
-enum LinearizationMode {
- HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
-};
-
-/// How to manage degeneracy
-enum DegeneracyMode {
- IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
-};
-
/*
* Parameters for the smart projection factors
*/
diff --git a/gtsam_unstable/slam/SmartStereoProjectionFactor.h b/gtsam_unstable/slam/SmartStereoProjectionFactor.h
index 21b0c5eb7..56b5d85de 100644
--- a/gtsam_unstable/slam/SmartStereoProjectionFactor.h
+++ b/gtsam_unstable/slam/SmartStereoProjectionFactor.h
@@ -35,17 +35,7 @@
namespace gtsam {
-/// Linearization mode: what factor to linearize to
- enum LinearizationMode {
- HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
- };
-
-/// How to manage degeneracy
-enum DegeneracyMode {
- IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
- };
-
- /*
+ /*
* Parameters for the smart stereo projection factors
*/
struct GTSAM_EXPORT SmartStereoProjectionParams {
@@ -119,8 +109,6 @@ enum DegeneracyMode {
}
};
-
-
/**
* SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around.
* This factor operates with StereoCamera. This factor requires that values
@@ -155,14 +143,19 @@ public:
/// Vector of cameras
typedef CameraSet Cameras;
+ /// Vector of monocular cameras (stereo treated as 2 monocular)
+ typedef PinholeCamera MonoCamera;
+ typedef CameraSet MonoCameras;
+ typedef std::vector MonoMeasurements;
+
/**
* Constructor
* @param params internal parameters of the smart factors
*/
SmartStereoProjectionFactor(const SharedNoiseModel& sharedNoiseModel,
- const SmartStereoProjectionParams& params =
- SmartStereoProjectionParams()) :
- Base(sharedNoiseModel), //
+ const SmartStereoProjectionParams& params = SmartStereoProjectionParams(),
+ const boost::optional body_P_sensor = boost::none) :
+ Base(sharedNoiseModel, body_P_sensor), //
params_(params), //
result_(TriangulationResult::Degenerate()) {
}
@@ -240,75 +233,28 @@ public:
size_t m = cameras.size();
bool retriangulate = decideIfTriangulate(cameras);
-// if(!retriangulate)
-// std::cout << "retriangulate = false" << std::endl;
-//
-// bool retriangulate = true;
-
- if (retriangulate) {
-// std::cout << "Retriangulate " << std::endl;
- std::vector reprojections;
- reprojections.reserve(m);
- for(size_t i = 0; i < m; i++) {
- reprojections.push_back(cameras[i].backproject(measured_[i]));
+ // triangulate stereo measurements by treating each stereocamera as a pair of monocular cameras
+ MonoCameras monoCameras;
+ MonoMeasurements monoMeasured;
+ for(size_t i = 0; i < m; i++) {
+ const Pose3 leftPose = cameras[i].pose();
+ const Cal3_S2 monoCal = cameras[i].calibration().calibration();
+ const MonoCamera leftCamera_i(leftPose,monoCal);
+ const Pose3 left_Pose_right = Pose3(Rot3(),Point3(cameras[i].baseline(),0.0,0.0));
+ const Pose3 rightPose = leftPose.compose( left_Pose_right );
+ const MonoCamera rightCamera_i(rightPose,monoCal);
+ const StereoPoint2 zi = measured_[i];
+ monoCameras.push_back(leftCamera_i);
+ monoMeasured.push_back(Point2(zi.uL(),zi.v()));
+ if(!std::isnan(zi.uR())){ // if right point is valid
+ monoCameras.push_back(rightCamera_i);
+ monoMeasured.push_back(Point2(zi.uR(),zi.v()));
}
-
- Point3 pw_sum(0,0,0);
- for(const Point3& pw: reprojections) {
- pw_sum = pw_sum + pw;
- }
- // average reprojected landmark
- Point3 pw_avg = pw_sum / double(m);
-
- double totalReprojError = 0;
-
- // check if it lies in front of all cameras
- for(size_t i = 0; i < m; i++) {
- const Pose3& pose = cameras[i].pose();
- const Point3& pl = pose.transform_to(pw_avg);
- if (pl.z() <= 0) {
- result_ = TriangulationResult::BehindCamera();
- return result_;
- }
-
- // check landmark distance
- if (params_.triangulation.landmarkDistanceThreshold > 0 &&
- pl.norm() > params_.triangulation.landmarkDistanceThreshold) {
- result_ = TriangulationResult::FarPoint();
- return result_;
- }
-
- if (params_.triangulation.dynamicOutlierRejectionThreshold > 0) {
- const StereoPoint2& zi = measured_[i];
- StereoPoint2 reprojectionError(cameras[i].project(pw_avg) - zi);
- totalReprojError += reprojectionError.vector().norm();
- }
- } // for
-
- if (params_.triangulation.dynamicOutlierRejectionThreshold > 0
- && totalReprojError / m > params_.triangulation.dynamicOutlierRejectionThreshold) {
- result_ = TriangulationResult::Outlier();
- return result_;
- }
-
- if(params_.triangulation.enableEPI) {
- try {
- pw_avg = triangulateNonlinear(cameras, measured_, pw_avg);
- } catch(StereoCheiralityException& e) {
- if(params_.verboseCheirality)
- std::cout << "Cheirality Exception in SmartStereoProjectionFactor" << std::endl;
- if(params_.throwCheirality)
- throw;
- result_ = TriangulationResult::BehindCamera();
- return TriangulationResult::BehindCamera();
- }
- }
-
- result_ = TriangulationResult(pw_avg);
-
- } // if retriangulate
+ }
+ if (retriangulate)
+ result_ = gtsam::triangulateSafe(monoCameras, monoMeasured,
+ params_.triangulation);
return result_;
-
}
/// triangulate
@@ -570,6 +516,32 @@ public:
}
}
+ /**
+ * This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
+ */
+ virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
+ boost::optional Fs = boost::none,
+ boost::optional E = boost::none) const
+ {
+ // when using stereo cameras, some of the measurements might be missing:
+ for(size_t i=0; i < cameras.size(); i++){
+ const StereoPoint2& z = measured_.at(i);
+ if(std::isnan(z.uR())) // if the right pixel is invalid
+ {
+ if(Fs){ // delete influence of right point on jacobian Fs
+ MatrixZD& Fi = Fs->at(i);
+ for(size_t ii=0; iirow(ZDim * i + 1) = Matrix::Zero(1, E->cols());
+
+ // set the corresponding entry of vector ue to zero
+ ue(ZDim * i + 1) = 0.0;
+ }
+ }
+ }
+
/** return the landmark */
TriangulationResult point() const {
return result_;
diff --git a/gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h b/gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h
index 65134cb96..3b4c5e0db 100644
--- a/gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h
+++ b/gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h
@@ -66,9 +66,9 @@ public:
* @param params internal parameters of the smart factors
*/
SmartStereoProjectionPoseFactor(const SharedNoiseModel& sharedNoiseModel,
- const SmartStereoProjectionParams& params =
- SmartStereoProjectionParams()) :
- Base(sharedNoiseModel, params) {
+ const SmartStereoProjectionParams& params = SmartStereoProjectionParams(),
+ const boost::optional body_P_sensor = boost::none) :
+ Base(sharedNoiseModel, params, body_P_sensor) {
}
/** Virtual destructor */
@@ -102,7 +102,7 @@ public:
/**
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
- * @param mmeasurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
+ * @param measurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
* @param K the (known) camera calibration (same for all measurements)
*/
@@ -161,7 +161,11 @@ public:
Base::Cameras cameras;
size_t i=0;
for(const Key& k: this->keys_) {
- const Pose3& pose = values.at(k);
+ Pose3 pose = values.at(k);
+
+ if (Base::body_P_sensor_)
+ pose = pose.compose(*(Base::body_P_sensor_));
+
StereoCamera camera(pose, K_all_[i++]);
cameras.push_back(camera);
}
diff --git a/gtsam_unstable/slam/tests/testSmartStereoProjectionPoseFactor.cpp b/gtsam_unstable/slam/tests/testSmartStereoProjectionPoseFactor.cpp
index 8051e238a..b17347edb 100644
--- a/gtsam_unstable/slam/tests/testSmartStereoProjectionPoseFactor.cpp
+++ b/gtsam_unstable/slam/tests/testSmartStereoProjectionPoseFactor.cpp
@@ -18,7 +18,7 @@
* @date Sept 2013
*/
-// TODO #include
+#include
#include
#include
#include
@@ -33,8 +33,6 @@ using namespace boost::assign;
using namespace gtsam;
// make a realistic calibration matrix
-static double fov = 60; // degrees
-static size_t w = 640, h = 480;
static double b = 1;
static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
@@ -62,6 +60,8 @@ static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more re
static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
Point3(0.25, -0.10, 1.0));
+static double missing_uR = std::numeric_limits::quiet_NaN();
+
vector stereo_projectToMultipleCameras(const StereoCamera& cam1,
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
@@ -151,6 +151,60 @@ TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
//EXPECT(assert_equal(zero(4),actual,1e-8));
}
+/* *************************************************************************/
+TEST( SmartProjectionPoseFactor, noiselessWithMissingMeasurements ) {
+
+ // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
+ Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
+ Point3(0, 0, 1));
+ StereoCamera level_camera(level_pose, K2);
+
+ // create second camera 1 meter to the right of first camera
+ Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
+ StereoCamera level_camera_right(level_pose_right, K2);
+
+ // landmark ~5 meters in front of camera
+ Point3 landmark(5, 0.5, 1.2);
+
+ // 1. Project two landmarks into two cameras and triangulate
+ StereoPoint2 level_uv = level_camera.project(landmark);
+ StereoPoint2 level_uv_right = level_camera_right.project(landmark);
+ StereoPoint2 level_uv_right_missing(level_uv_right.uL(),missing_uR,level_uv_right.v());
+
+ Values values;
+ values.insert(x1, level_pose);
+ values.insert(x2, level_pose_right);
+
+ SmartStereoProjectionPoseFactor factor1(model);
+ factor1.add(level_uv, x1, K2);
+ factor1.add(level_uv_right_missing, x2, K2);
+
+ double actualError = factor1.error(values);
+ double expectedError = 0.0;
+ EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
+
+ // TEST TRIANGULATION WITH MISSING VALUES: i) right pixel of second camera is missing:
+ SmartStereoProjectionPoseFactor::Cameras cameras = factor1.cameras(values);
+ double actualError2 = factor1.totalReprojectionError(cameras);
+ EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
+
+ CameraSet cams;
+ cams += level_camera;
+ cams += level_camera_right;
+ TriangulationResult result = factor1.triangulateSafe(cams);
+ CHECK(result);
+ EXPECT(assert_equal(landmark, *result, 1e-7));
+
+ // TEST TRIANGULATION WITH MISSING VALUES: ii) right pixels of both cameras are missing:
+ SmartStereoProjectionPoseFactor factor2(model);
+ StereoPoint2 level_uv_missing(level_uv.uL(),missing_uR,level_uv.v());
+ factor2.add(level_uv_missing, x1, K2);
+ factor2.add(level_uv_right_missing, x2, K2);
+ result = factor2.triangulateSafe(cams);
+ CHECK(result);
+ EXPECT(assert_equal(landmark, *result, 1e-7));
+}
+
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, noisy ) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
@@ -248,8 +302,6 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
-
-
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
@@ -273,7 +325,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
Point3(0.1, -0.1, 1.9)), values.at(x3)));
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
- EXPECT_DOUBLES_EQUAL(797312.95069157204, graph.error(values), 1e-7);
+ EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error
// get triangulated landmarks from smart factors
Point3 landmark1_smart = *smartFactor1->point();
@@ -335,7 +387,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
- EXPECT_DOUBLES_EQUAL(797312.95069157204, graph2.error(values), 1e-7);
+ EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
Values result2 = optimizer2.optimize();
@@ -344,7 +396,192 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
}
+/* *************************************************************************/
+TEST( SmartStereoProjectionPoseFactor, body_P_sensor ) {
+ // camera has some displacement
+ Pose3 body_P_sensor = Pose3(Rot3::Ypr(-0.01, 0., -0.05), Point3(0.1, 0, 0.1));
+ // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
+ Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
+ StereoCamera cam1(pose1.compose(body_P_sensor), K2);
+
+ // create second camera 1 meter to the right of first camera
+ Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
+ StereoCamera cam2(pose2.compose(body_P_sensor), K2);
+
+ // create third camera 1 meter above the first camera
+ Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
+ StereoCamera cam3(pose3.compose(body_P_sensor), K2);
+
+ // three landmarks ~5 meters infront of camera
+ Point3 landmark1(5, 0.5, 1.2);
+ Point3 landmark2(5, -0.5, 1.2);
+ Point3 landmark3(3, 0, 3.0);
+
+ // 1. Project three landmarks into three cameras and triangulate
+ vector measurements_l1 = stereo_projectToMultipleCameras(cam1,
+ cam2, cam3, landmark1);
+ vector measurements_l2 = stereo_projectToMultipleCameras(cam1,
+ cam2, cam3, landmark2);
+ vector measurements_l3 = stereo_projectToMultipleCameras(cam1,
+ cam2, cam3, landmark3);
+
+ vector views;
+ views.push_back(x1);
+ views.push_back(x2);
+ views.push_back(x3);
+
+ SmartStereoProjectionParams smart_params;
+ smart_params.triangulation.enableEPI = true;
+ SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
+ smartFactor1->add(measurements_l1, views, K2);
+
+ SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
+ smartFactor2->add(measurements_l2, views, K2);
+
+ SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
+ smartFactor3->add(measurements_l3, views, K2);
+
+ const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
+
+ NonlinearFactorGraph graph;
+ graph.push_back(smartFactor1);
+ graph.push_back(smartFactor2);
+ graph.push_back(smartFactor3);
+ graph.push_back(PriorFactor(x1, pose1, noisePrior));
+ graph.push_back(PriorFactor(x2, pose2, noisePrior));
+
+ // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
+ Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
+ Point3(0.1, 0.1, 0.1)); // smaller noise
+ Values values;
+ values.insert(x1, pose1);
+ values.insert(x2, pose2);
+ // initialize third pose with some noise, we expect it to move back to original pose3
+ values.insert(x3, pose3 * noise_pose);
+ EXPECT(
+ assert_equal(
+ Pose3(
+ Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
+ -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
+ Point3(0.1, -0.1, 1.9)), values.at(x3)));
+
+ // cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
+ EXPECT_DOUBLES_EQUAL(953392.32838422502, graph.error(values), 1e-7); // initial error
+
+ Values result;
+ gttic_(SmartStereoProjectionPoseFactor);
+ LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
+ result = optimizer.optimize();
+ gttoc_(SmartStereoProjectionPoseFactor);
+ tictoc_finishedIteration_();
+
+ EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
+
+ // result.print("results of 3 camera, 3 landmark optimization \n");
+ EXPECT(assert_equal(pose3, result.at(x3)));
+}
+/* *************************************************************************/
+TEST( SmartStereoProjectionPoseFactor, body_P_sensor_monocular ){
+ // make a realistic calibration matrix
+ double fov = 60; // degrees
+ size_t w=640,h=480;
+
+ Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
+
+ // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
+ Pose3 cameraPose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // body poses
+ Pose3 cameraPose2 = cameraPose1 * Pose3(Rot3(), Point3(1,0,0));
+ Pose3 cameraPose3 = cameraPose1 * Pose3(Rot3(), Point3(0,-1,0));
+
+ SimpleCamera cam1(cameraPose1, *K); // with camera poses
+ SimpleCamera cam2(cameraPose2, *K);
+ SimpleCamera cam3(cameraPose3, *K);
+
+ // create arbitrary body_Pose_sensor (transforms from sensor to body)
+ Pose3 sensor_to_body = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(1, 1, 1)); // Pose3(); //
+
+ // These are the poses we want to estimate, from camera measurements
+ Pose3 bodyPose1 = cameraPose1.compose(sensor_to_body.inverse());
+ Pose3 bodyPose2 = cameraPose2.compose(sensor_to_body.inverse());
+ Pose3 bodyPose3 = cameraPose3.compose(sensor_to_body.inverse());
+
+ // three landmarks ~5 meters infront of camera
+ Point3 landmark1(5, 0.5, 1.2);
+ Point3 landmark2(5, -0.5, 1.2);
+ Point3 landmark3(5, 0, 3.0);
+
+ vector measurements_cam1, measurements_cam2, measurements_cam3;
+
+ // Project three landmarks into three cameras
+ projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
+ projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
+ projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
+
+ // Create smart factors
+ std::vector views;
+ views.push_back(x1);
+ views.push_back(x2);
+ views.push_back(x3);
+
+ // convert measurement to (degenerate) stereoPoint2 (with right pixel being NaN)
+ vector measurements_cam1_stereo, measurements_cam2_stereo, measurements_cam3_stereo;
+ for(size_t k=0; k(x1, bodyPose1, noisePrior));
+ graph.push_back(PriorFactor(x2, bodyPose2, noisePrior));
+
+ // Check errors at ground truth poses
+ Values gtValues;
+ gtValues.insert(x1, bodyPose1);
+ gtValues.insert(x2, bodyPose2);
+ gtValues.insert(x3, bodyPose3);
+ double actualError = graph.error(gtValues);
+ double expectedError = 0.0;
+ DOUBLES_EQUAL(expectedError, actualError, 1e-7)
+
+ Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
+ Values values;
+ values.insert(x1, bodyPose1);
+ values.insert(x2, bodyPose2);
+ // initialize third pose with some noise, we expect it to move back to original pose3
+ values.insert(x3, bodyPose3*noise_pose);
+
+ LevenbergMarquardtParams lmParams;
+ Values result;
+ LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
+ result = optimizer.optimize();
+ EXPECT(assert_equal(bodyPose3,result.at(x3)));
+}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
@@ -411,6 +648,78 @@ TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
EXPECT(assert_equal(pose3, result.at(x3)));
}
+/* *************************************************************************/
+TEST( SmartStereoProjectionPoseFactor, jacobianSVDwithMissingValues ) {
+
+ vector views;
+ views.push_back(x1);
+ views.push_back(x2);
+ views.push_back(x3);
+
+ // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
+ Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
+ StereoCamera cam1(pose1, K);
+ // create second camera 1 meter to the right of first camera
+ Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
+ StereoCamera cam2(pose2, K);
+ // create third camera 1 meter above the first camera
+ Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
+ StereoCamera cam3(pose3, K);
+
+ // three landmarks ~5 meters infront of camera
+ Point3 landmark1(5, 0.5, 1.2);
+ Point3 landmark2(5, -0.5, 1.2);
+ Point3 landmark3(3, 0, 3.0);
+
+ // 1. Project three landmarks into three cameras and triangulate
+ vector measurements_cam1 = stereo_projectToMultipleCameras(cam1,
+ cam2, cam3, landmark1);
+ vector measurements_cam2 = stereo_projectToMultipleCameras(cam1,
+ cam2, cam3, landmark2);
+ vector measurements_cam3 = stereo_projectToMultipleCameras(cam1,
+ cam2, cam3, landmark3);
+
+ // DELETE SOME MEASUREMENTS
+ StereoPoint2 sp = measurements_cam1[1];
+ measurements_cam1[1] = StereoPoint2(sp.uL(), missing_uR, sp.v());
+ sp = measurements_cam2[2];
+ measurements_cam2[2] = StereoPoint2(sp.uL(), missing_uR, sp.v());
+
+ SmartStereoProjectionParams params;
+ params.setLinearizationMode(JACOBIAN_SVD);
+
+ SmartStereoProjectionPoseFactor::shared_ptr smartFactor1( new SmartStereoProjectionPoseFactor(model, params));
+ smartFactor1->add(measurements_cam1, views, K);
+
+ SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
+ smartFactor2->add(measurements_cam2, views, K);
+
+ SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
+ smartFactor3->add(measurements_cam3, views, K);
+
+ const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
+
+ NonlinearFactorGraph graph;
+ graph.push_back(smartFactor1);
+ graph.push_back(smartFactor2);
+ graph.push_back(smartFactor3);
+ graph.push_back(PriorFactor(x1, pose1, noisePrior));
+ graph.push_back(PriorFactor(x2, pose2, noisePrior));
+
+ // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
+ Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
+ Point3(0.1, 0.1, 0.1)); // smaller noise
+ Values values;
+ values.insert(x1, pose1);
+ values.insert(x2, pose2);
+ values.insert(x3, pose3 * noise_pose);
+
+ Values result;
+ LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
+ result = optimizer.optimize();
+ EXPECT(assert_equal(pose3, result.at(x3),1e-7));
+}
+
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
@@ -562,7 +871,7 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
// dynamic outlier rejection is off
- EXPECT_DOUBLES_EQUAL(6700, smartFactor4b->error(values), 1e-9);
+ EXPECT_DOUBLES_EQUAL(6147.3947317473921, smartFactor4b->error(values), 1e-9);
// Factors 1-3 should have valid point, factor 4 should not
EXPECT(smartFactor1->point());
@@ -1039,7 +1348,7 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
}
/* *************************************************************************/
-TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
+TEST( SmartStereoProjectionPoseFactor, HessianWithRotationNonDegenerate ) {
vector views;
views.push_back(x1);
@@ -1072,6 +1381,9 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
boost::shared_ptr hessianFactor = smartFactor->linearize(
values);
+ // check that it is non degenerate
+ EXPECT(smartFactor->isValid());
+
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
@@ -1082,6 +1394,9 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
boost::shared_ptr hessianFactorRot = smartFactor->linearize(
rotValues);
+ // check that it is non degenerate
+ EXPECT(smartFactor->isValid());
+
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
@@ -1098,10 +1413,14 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
boost::shared_ptr hessianFactorRotTran =
smartFactor->linearize(tranValues);
- // Hessian is invariant to rotations and translations in the nondegenerate case
+ // Hessian is invariant to rotations and translations in the degenerate case
EXPECT(
assert_equal(hessianFactor->information(),
+#ifdef GTSAM_USE_EIGEN_MKL
+ hessianFactorRotTran->information(), 1e-5));
+#else
hessianFactorRotTran->information(), 1e-6));
+#endif
}
/* ************************************************************************* */