Merged in feature/heterogeneousSmartFactorNoise (pull request #271)
Feature/heterogeneoussmartfactornoise Approved-by: Chris Beall Approved-by: Jing Dongrelease/4.3a0
commit
fbb9d3bdda
|
@ -56,7 +56,11 @@ protected:
|
||||||
// Project and fill error vector
|
// Project and fill error vector
|
||||||
Vector b(ZDim * m);
|
Vector b(ZDim * m);
|
||||||
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
|
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
|
||||||
b.segment<ZDim>(row) = traits<Z>::Local(measured[i], predicted[i]);
|
Vector bi = traits<Z>::Local(measured[i], predicted[i]);
|
||||||
|
if(ZDim==3 && std::isnan(bi(1))){ // if it is a stereo point and the right pixel is missing (nan)
|
||||||
|
bi(1) = 0;
|
||||||
|
}
|
||||||
|
b.segment<ZDim>(row) = bi;
|
||||||
}
|
}
|
||||||
return b;
|
return b;
|
||||||
}
|
}
|
||||||
|
|
|
@ -39,7 +39,10 @@ namespace gtsam {
|
||||||
|
|
||||||
const Point3 q = leftCamPose_.transform_to(point);
|
const Point3 q = leftCamPose_.transform_to(point);
|
||||||
|
|
||||||
if ( q.z() <= 0 ) throw StereoCheiralityException();
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||||
|
if (q.z() <= 0)
|
||||||
|
throw StereoCheiralityException();
|
||||||
|
#endif
|
||||||
|
|
||||||
// get calibration
|
// get calibration
|
||||||
const Cal3_S2Stereo& K = *K_;
|
const Cal3_S2Stereo& K = *K_;
|
||||||
|
|
|
@ -104,6 +104,23 @@ TEST( StereoCamera, Dproject)
|
||||||
CHECK(assert_equal(expected2,actual2,1e-7));
|
CHECK(assert_equal(expected2,actual2,1e-7));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
TEST( StereoCamera, projectCheirality)
|
||||||
|
{
|
||||||
|
// create a Stereo camera
|
||||||
|
Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(1500, 1500, 0, 320, 240, 0.5));
|
||||||
|
StereoCamera stereoCam(Pose3(), K);
|
||||||
|
|
||||||
|
// point behind the camera
|
||||||
|
Point3 p(0, 0, -5);
|
||||||
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||||
|
CHECK_EXCEPTION(stereoCam.project2(p), StereoCheiralityException);
|
||||||
|
#else // otherwise project should not throw the exception
|
||||||
|
StereoPoint2 expected = StereoPoint2(320, 470, 240);
|
||||||
|
CHECK(assert_equal(expected,stereoCam.project2(p),1e-7));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST( StereoCamera, backproject_case1)
|
TEST( StereoCamera, backproject_case1)
|
||||||
{
|
{
|
||||||
|
|
|
@ -202,7 +202,7 @@ public:
|
||||||
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, //
|
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, //
|
||||||
boost::optional<Matrix&> E = boost::none) const {
|
boost::optional<Matrix&> E = boost::none) const {
|
||||||
Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
|
Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
|
||||||
if(body_P_sensor_){
|
if(body_P_sensor_ && Fs){
|
||||||
for(size_t i=0; i < Fs->size(); i++){
|
for(size_t i=0; i < Fs->size(); i++){
|
||||||
Pose3 w_Pose_body = (cameras[i].pose()).compose(body_P_sensor_->inverse());
|
Pose3 w_Pose_body = (cameras[i].pose()).compose(body_P_sensor_->inverse());
|
||||||
Matrix J(6, 6);
|
Matrix J(6, 6);
|
||||||
|
@ -210,9 +210,17 @@ public:
|
||||||
Fs->at(i) = Fs->at(i) * J;
|
Fs->at(i) = Fs->at(i) * J;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
correctForMissingMeasurements(cameras, ue, Fs, E);
|
||||||
return ue;
|
return ue;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This corrects the Jacobians for the case in which some pixel measurement is missing (nan)
|
||||||
|
* In practice, this does not do anything in the monocular case, but it is implemented in the stereo version
|
||||||
|
*/
|
||||||
|
virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue, boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
|
||||||
|
boost::optional<Matrix&> E = boost::none) const {}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z]
|
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z]
|
||||||
* Noise model applied
|
* Noise model applied
|
||||||
|
|
|
@ -0,0 +1,134 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file SmartFactorParams
|
||||||
|
* @brief Collect common parameters for SmartProjection and SmartStereoProjection factors
|
||||||
|
* @author Luca Carlone
|
||||||
|
* @author Zsolt Kira
|
||||||
|
* @author Frank Dellaert
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <gtsam/geometry/triangulation.h>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* SmartFactorParams: parameters and (linearization/degeneracy) modes for SmartProjection and SmartStereoProjection factors
|
||||||
|
*/
|
||||||
|
/// Linearization mode: what factor to linearize to
|
||||||
|
enum LinearizationMode {
|
||||||
|
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
|
||||||
|
};
|
||||||
|
|
||||||
|
/// How to manage degeneracy
|
||||||
|
enum DegeneracyMode {
|
||||||
|
IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Parameters for the smart (stereo) projection factors
|
||||||
|
*/
|
||||||
|
struct GTSAM_EXPORT SmartProjectionParams {
|
||||||
|
|
||||||
|
LinearizationMode linearizationMode; ///< How to linearize the factor
|
||||||
|
DegeneracyMode degeneracyMode; ///< How to linearize the factor
|
||||||
|
|
||||||
|
/// @name Parameters governing the triangulation
|
||||||
|
/// @{
|
||||||
|
TriangulationParameters triangulation;
|
||||||
|
double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
/// @name Parameters governing how triangulation result is treated
|
||||||
|
/// @{
|
||||||
|
bool throwCheirality; ///< If true, re-throws Cheirality exceptions (default: false)
|
||||||
|
bool verboseCheirality; ///< If true, prints text for Cheirality exceptions (default: false)
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
// Constructor
|
||||||
|
SmartProjectionParams(LinearizationMode linMode = HESSIAN,
|
||||||
|
DegeneracyMode degMode = IGNORE_DEGENERACY, bool throwCheirality = false,
|
||||||
|
bool verboseCheirality = false, double retriangulationTh = 1e-5) :
|
||||||
|
linearizationMode(linMode), degeneracyMode(degMode), retriangulationThreshold(
|
||||||
|
retriangulationTh), throwCheirality(throwCheirality), verboseCheirality(
|
||||||
|
verboseCheirality) {
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual ~SmartProjectionParams() {
|
||||||
|
}
|
||||||
|
|
||||||
|
void print(const std::string& str = "") const {
|
||||||
|
std::cout << "linearizationMode: " << linearizationMode << "\n";
|
||||||
|
std::cout << " degeneracyMode: " << degeneracyMode << "\n";
|
||||||
|
std::cout << triangulation << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// get class variables
|
||||||
|
LinearizationMode getLinearizationMode() const {
|
||||||
|
return linearizationMode;
|
||||||
|
}
|
||||||
|
DegeneracyMode getDegeneracyMode() const {
|
||||||
|
return degeneracyMode;
|
||||||
|
}
|
||||||
|
TriangulationParameters getTriangulationParameters() const {
|
||||||
|
return triangulation;
|
||||||
|
}
|
||||||
|
bool getVerboseCheirality() const {
|
||||||
|
return verboseCheirality;
|
||||||
|
}
|
||||||
|
bool getThrowCheirality() const {
|
||||||
|
return throwCheirality;
|
||||||
|
}
|
||||||
|
double getRetriangulationThreshold() const {
|
||||||
|
return retriangulationThreshold;
|
||||||
|
}
|
||||||
|
// set class variables
|
||||||
|
void setLinearizationMode(LinearizationMode linMode) {
|
||||||
|
linearizationMode = linMode;
|
||||||
|
}
|
||||||
|
void setDegeneracyMode(DegeneracyMode degMode) {
|
||||||
|
degeneracyMode = degMode;
|
||||||
|
}
|
||||||
|
void setRetriangulationThreshold(double retriangulationTh) {
|
||||||
|
retriangulationThreshold = retriangulationTh;
|
||||||
|
}
|
||||||
|
void setRankTolerance(double rankTol) {
|
||||||
|
triangulation.rankTolerance = rankTol;
|
||||||
|
}
|
||||||
|
void setEnableEPI(bool enableEPI) {
|
||||||
|
triangulation.enableEPI = enableEPI;
|
||||||
|
}
|
||||||
|
void setLandmarkDistanceThreshold(double landmarkDistanceThreshold) {
|
||||||
|
triangulation.landmarkDistanceThreshold = landmarkDistanceThreshold;
|
||||||
|
}
|
||||||
|
void setDynamicOutlierRejectionThreshold(double dynOutRejectionThreshold) {
|
||||||
|
triangulation.dynamicOutlierRejectionThreshold = dynOutRejectionThreshold;
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
/// Serialization function
|
||||||
|
friend class boost::serialization::access;
|
||||||
|
template<class ARCHIVE>
|
||||||
|
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||||
|
ar & BOOST_SERIALIZATION_NVP(linearizationMode);
|
||||||
|
ar & BOOST_SERIALIZATION_NVP(degeneracyMode);
|
||||||
|
ar & BOOST_SERIALIZATION_NVP(triangulation);
|
||||||
|
ar & BOOST_SERIALIZATION_NVP(retriangulationThreshold);
|
||||||
|
ar & BOOST_SERIALIZATION_NVP(throwCheirality);
|
||||||
|
ar & BOOST_SERIALIZATION_NVP(verboseCheirality);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // \ namespace gtsam
|
|
@ -20,6 +20,7 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <gtsam/slam/SmartFactorBase.h>
|
#include <gtsam/slam/SmartFactorBase.h>
|
||||||
|
#include <gtsam/slam/SmartFactorParams.h>
|
||||||
|
|
||||||
#include <gtsam/geometry/triangulation.h>
|
#include <gtsam/geometry/triangulation.h>
|
||||||
#include <gtsam/inference/Symbol.h>
|
#include <gtsam/inference/Symbol.h>
|
||||||
|
@ -31,109 +32,6 @@
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
/// Linearization mode: what factor to linearize to
|
|
||||||
enum LinearizationMode {
|
|
||||||
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
|
|
||||||
};
|
|
||||||
|
|
||||||
/// How to manage degeneracy
|
|
||||||
enum DegeneracyMode {
|
|
||||||
IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Parameters for the smart projection factors
|
|
||||||
*/
|
|
||||||
struct GTSAM_EXPORT SmartProjectionParams {
|
|
||||||
|
|
||||||
LinearizationMode linearizationMode; ///< How to linearize the factor
|
|
||||||
DegeneracyMode degeneracyMode; ///< How to linearize the factor
|
|
||||||
|
|
||||||
/// @name Parameters governing the triangulation
|
|
||||||
/// @{
|
|
||||||
TriangulationParameters triangulation;
|
|
||||||
double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
|
|
||||||
/// @}
|
|
||||||
|
|
||||||
/// @name Parameters governing how triangulation result is treated
|
|
||||||
/// @{
|
|
||||||
bool throwCheirality; ///< If true, re-throws Cheirality exceptions (default: false)
|
|
||||||
bool verboseCheirality; ///< If true, prints text for Cheirality exceptions (default: false)
|
|
||||||
/// @}
|
|
||||||
|
|
||||||
// Constructor
|
|
||||||
SmartProjectionParams(LinearizationMode linMode = HESSIAN,
|
|
||||||
DegeneracyMode degMode = IGNORE_DEGENERACY, bool throwCheirality = false,
|
|
||||||
bool verboseCheirality = false, double retriangulationTh = 1e-5) :
|
|
||||||
linearizationMode(linMode), degeneracyMode(degMode), retriangulationThreshold(
|
|
||||||
retriangulationTh), throwCheirality(throwCheirality), verboseCheirality(
|
|
||||||
verboseCheirality) {
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual ~SmartProjectionParams() {
|
|
||||||
}
|
|
||||||
|
|
||||||
void print(const std::string& str) const {
|
|
||||||
std::cout << "linearizationMode: " << linearizationMode << "\n";
|
|
||||||
std::cout << " degeneracyMode: " << degeneracyMode << "\n";
|
|
||||||
std::cout << triangulation << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
LinearizationMode getLinearizationMode() const {
|
|
||||||
return linearizationMode;
|
|
||||||
}
|
|
||||||
DegeneracyMode getDegeneracyMode() const {
|
|
||||||
return degeneracyMode;
|
|
||||||
}
|
|
||||||
TriangulationParameters getTriangulationParameters() const {
|
|
||||||
return triangulation;
|
|
||||||
}
|
|
||||||
bool getVerboseCheirality() const {
|
|
||||||
return verboseCheirality;
|
|
||||||
}
|
|
||||||
bool getThrowCheirality() const {
|
|
||||||
return throwCheirality;
|
|
||||||
}
|
|
||||||
double getRetriangulationThreshold() const {
|
|
||||||
return retriangulationThreshold;
|
|
||||||
}
|
|
||||||
void setLinearizationMode(LinearizationMode linMode) {
|
|
||||||
linearizationMode = linMode;
|
|
||||||
}
|
|
||||||
void setRetriangulationThreshold(double retriangulationTh) {
|
|
||||||
retriangulationThreshold = retriangulationTh;
|
|
||||||
}
|
|
||||||
void setDegeneracyMode(DegeneracyMode degMode) {
|
|
||||||
degeneracyMode = degMode;
|
|
||||||
}
|
|
||||||
void setRankTolerance(double rankTol) {
|
|
||||||
triangulation.rankTolerance = rankTol;
|
|
||||||
}
|
|
||||||
void setEnableEPI(bool enableEPI) {
|
|
||||||
triangulation.enableEPI = enableEPI;
|
|
||||||
}
|
|
||||||
void setLandmarkDistanceThreshold(double landmarkDistanceThreshold) {
|
|
||||||
triangulation.landmarkDistanceThreshold = landmarkDistanceThreshold;
|
|
||||||
}
|
|
||||||
void setDynamicOutlierRejectionThreshold(double dynOutRejectionThreshold) {
|
|
||||||
triangulation.dynamicOutlierRejectionThreshold = dynOutRejectionThreshold;
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
|
|
||||||
/// Serialization function
|
|
||||||
friend class boost::serialization::access;
|
|
||||||
template<class ARCHIVE>
|
|
||||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
|
||||||
ar & BOOST_SERIALIZATION_NVP(linearizationMode);
|
|
||||||
ar & BOOST_SERIALIZATION_NVP(degeneracyMode);
|
|
||||||
ar & BOOST_SERIALIZATION_NVP(triangulation);
|
|
||||||
ar & BOOST_SERIALIZATION_NVP(retriangulationThreshold);
|
|
||||||
ar & BOOST_SERIALIZATION_NVP(throwCheirality);
|
|
||||||
ar & BOOST_SERIALIZATION_NVP(verboseCheirality);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* SmartProjectionFactor: triangulates point and keeps an estimate of it around.
|
* SmartProjectionFactor: triangulates point and keeps an estimate of it around.
|
||||||
* This factor operates with monocular cameras, where a camera is expected to
|
* This factor operates with monocular cameras, where a camera is expected to
|
||||||
|
|
|
@ -1011,6 +1011,7 @@ TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_fac
|
||||||
/* *************************************************************************/
|
/* *************************************************************************/
|
||||||
TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ) {
|
TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ) {
|
||||||
|
|
||||||
|
// this test considers a condition in which the cheirality constraint is triggered
|
||||||
using namespace vanillaPose;
|
using namespace vanillaPose;
|
||||||
|
|
||||||
vector<Key> views;
|
vector<Key> views;
|
||||||
|
@ -1083,8 +1084,14 @@ TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor )
|
||||||
|
|
||||||
// Since we do not do anything on degenerate instances (ZERO_ON_DEGENERACY)
|
// Since we do not do anything on degenerate instances (ZERO_ON_DEGENERACY)
|
||||||
// rotation remains the same as the initial guess, but position is fixed by PoseTranslationPrior
|
// rotation remains the same as the initial guess, but position is fixed by PoseTranslationPrior
|
||||||
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||||
EXPECT(assert_equal(Pose3(values.at<Pose3>(x3).rotation(),
|
EXPECT(assert_equal(Pose3(values.at<Pose3>(x3).rotation(),
|
||||||
Point3(0,0,1)), result.at<Pose3>(x3)));
|
Point3(0,0,1)), result.at<Pose3>(x3)));
|
||||||
|
#else
|
||||||
|
// if the check is disabled, no cheirality exception if thrown and the pose converges to the right rotation
|
||||||
|
// with modest accuracy since the configuration is essentially degenerate without the translation due to noise (noise_pose)
|
||||||
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3),1e-3));
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
/* *************************************************************************/
|
/* *************************************************************************/
|
||||||
|
|
|
@ -21,6 +21,7 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <gtsam/slam/SmartFactorBase.h>
|
#include <gtsam/slam/SmartFactorBase.h>
|
||||||
|
#include <gtsam/slam/SmartFactorParams.h>
|
||||||
|
|
||||||
#include <gtsam/geometry/triangulation.h>
|
#include <gtsam/geometry/triangulation.h>
|
||||||
#include <gtsam/geometry/Pose3.h>
|
#include <gtsam/geometry/Pose3.h>
|
||||||
|
@ -35,91 +36,10 @@
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
/// Linearization mode: what factor to linearize to
|
/*
|
||||||
enum LinearizationMode {
|
* Parameters for the smart stereo projection factors (identical to the SmartProjectionParams)
|
||||||
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
|
*/
|
||||||
};
|
typedef SmartProjectionParams SmartStereoProjectionParams;
|
||||||
|
|
||||||
/// How to manage degeneracy
|
|
||||||
enum DegeneracyMode {
|
|
||||||
IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Parameters for the smart stereo projection factors
|
|
||||||
*/
|
|
||||||
struct GTSAM_EXPORT SmartStereoProjectionParams {
|
|
||||||
|
|
||||||
LinearizationMode linearizationMode; ///< How to linearize the factor
|
|
||||||
DegeneracyMode degeneracyMode; ///< How to linearize the factor
|
|
||||||
|
|
||||||
/// @name Parameters governing the triangulation
|
|
||||||
/// @{
|
|
||||||
TriangulationParameters triangulation;
|
|
||||||
double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
|
|
||||||
/// @}
|
|
||||||
|
|
||||||
/// @name Parameters governing how triangulation result is treated
|
|
||||||
/// @{
|
|
||||||
bool throwCheirality; ///< If true, re-throws Cheirality exceptions (default: false)
|
|
||||||
bool verboseCheirality; ///< If true, prints text for Cheirality exceptions (default: false)
|
|
||||||
/// @}
|
|
||||||
|
|
||||||
|
|
||||||
/// Constructor
|
|
||||||
SmartStereoProjectionParams(LinearizationMode linMode = HESSIAN,
|
|
||||||
DegeneracyMode degMode = IGNORE_DEGENERACY, bool throwCheirality = false,
|
|
||||||
bool verboseCheirality = false) :
|
|
||||||
linearizationMode(linMode), degeneracyMode(degMode), retriangulationThreshold(
|
|
||||||
1e-5), throwCheirality(throwCheirality), verboseCheirality(
|
|
||||||
verboseCheirality) {
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual ~SmartStereoProjectionParams() {
|
|
||||||
}
|
|
||||||
|
|
||||||
void print(const std::string& str) const {
|
|
||||||
std::cout << "linearizationMode: " << linearizationMode << "\n";
|
|
||||||
std::cout << " degeneracyMode: " << degeneracyMode << "\n";
|
|
||||||
std::cout << triangulation << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
LinearizationMode getLinearizationMode() const {
|
|
||||||
return linearizationMode;
|
|
||||||
}
|
|
||||||
DegeneracyMode getDegeneracyMode() const {
|
|
||||||
return degeneracyMode;
|
|
||||||
}
|
|
||||||
TriangulationParameters getTriangulationParameters() const {
|
|
||||||
return triangulation;
|
|
||||||
}
|
|
||||||
bool getVerboseCheirality() const {
|
|
||||||
return verboseCheirality;
|
|
||||||
}
|
|
||||||
bool getThrowCheirality() const {
|
|
||||||
return throwCheirality;
|
|
||||||
}
|
|
||||||
void setLinearizationMode(LinearizationMode linMode) {
|
|
||||||
linearizationMode = linMode;
|
|
||||||
}
|
|
||||||
void setDegeneracyMode(DegeneracyMode degMode) {
|
|
||||||
degeneracyMode = degMode;
|
|
||||||
}
|
|
||||||
void setRankTolerance(double rankTol) {
|
|
||||||
triangulation.rankTolerance = rankTol;
|
|
||||||
}
|
|
||||||
void setEnableEPI(bool enableEPI) {
|
|
||||||
triangulation.enableEPI = enableEPI;
|
|
||||||
}
|
|
||||||
void setLandmarkDistanceThreshold(double landmarkDistanceThreshold) {
|
|
||||||
triangulation.landmarkDistanceThreshold = landmarkDistanceThreshold;
|
|
||||||
}
|
|
||||||
void setDynamicOutlierRejectionThreshold(double dynOutRejectionThreshold) {
|
|
||||||
triangulation.dynamicOutlierRejectionThreshold = dynOutRejectionThreshold;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around.
|
* SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around.
|
||||||
|
@ -155,14 +75,19 @@ public:
|
||||||
/// Vector of cameras
|
/// Vector of cameras
|
||||||
typedef CameraSet<StereoCamera> Cameras;
|
typedef CameraSet<StereoCamera> Cameras;
|
||||||
|
|
||||||
|
/// Vector of monocular cameras (stereo treated as 2 monocular)
|
||||||
|
typedef PinholeCamera<Cal3_S2> MonoCamera;
|
||||||
|
typedef CameraSet<MonoCamera> MonoCameras;
|
||||||
|
typedef std::vector<Point2> MonoMeasurements;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Constructor
|
* Constructor
|
||||||
* @param params internal parameters of the smart factors
|
* @param params internal parameters of the smart factors
|
||||||
*/
|
*/
|
||||||
SmartStereoProjectionFactor(const SharedNoiseModel& sharedNoiseModel,
|
SmartStereoProjectionFactor(const SharedNoiseModel& sharedNoiseModel,
|
||||||
const SmartStereoProjectionParams& params =
|
const SmartStereoProjectionParams& params = SmartStereoProjectionParams(),
|
||||||
SmartStereoProjectionParams()) :
|
const boost::optional<Pose3> body_P_sensor = boost::none) :
|
||||||
Base(sharedNoiseModel), //
|
Base(sharedNoiseModel, body_P_sensor), //
|
||||||
params_(params), //
|
params_(params), //
|
||||||
result_(TriangulationResult::Degenerate()) {
|
result_(TriangulationResult::Degenerate()) {
|
||||||
}
|
}
|
||||||
|
@ -240,75 +165,28 @@ public:
|
||||||
size_t m = cameras.size();
|
size_t m = cameras.size();
|
||||||
bool retriangulate = decideIfTriangulate(cameras);
|
bool retriangulate = decideIfTriangulate(cameras);
|
||||||
|
|
||||||
// if(!retriangulate)
|
// triangulate stereo measurements by treating each stereocamera as a pair of monocular cameras
|
||||||
// std::cout << "retriangulate = false" << std::endl;
|
MonoCameras monoCameras;
|
||||||
//
|
MonoMeasurements monoMeasured;
|
||||||
// bool retriangulate = true;
|
for(size_t i = 0; i < m; i++) {
|
||||||
|
const Pose3 leftPose = cameras[i].pose();
|
||||||
if (retriangulate) {
|
const Cal3_S2 monoCal = cameras[i].calibration().calibration();
|
||||||
// std::cout << "Retriangulate " << std::endl;
|
const MonoCamera leftCamera_i(leftPose,monoCal);
|
||||||
std::vector<Point3> reprojections;
|
const Pose3 left_Pose_right = Pose3(Rot3(),Point3(cameras[i].baseline(),0.0,0.0));
|
||||||
reprojections.reserve(m);
|
const Pose3 rightPose = leftPose.compose( left_Pose_right );
|
||||||
for(size_t i = 0; i < m; i++) {
|
const MonoCamera rightCamera_i(rightPose,monoCal);
|
||||||
reprojections.push_back(cameras[i].backproject(measured_[i]));
|
const StereoPoint2 zi = measured_[i];
|
||||||
|
monoCameras.push_back(leftCamera_i);
|
||||||
|
monoMeasured.push_back(Point2(zi.uL(),zi.v()));
|
||||||
|
if(!std::isnan(zi.uR())){ // if right point is valid
|
||||||
|
monoCameras.push_back(rightCamera_i);
|
||||||
|
monoMeasured.push_back(Point2(zi.uR(),zi.v()));
|
||||||
}
|
}
|
||||||
|
}
|
||||||
Point3 pw_sum(0,0,0);
|
if (retriangulate)
|
||||||
for(const Point3& pw: reprojections) {
|
result_ = gtsam::triangulateSafe(monoCameras, monoMeasured,
|
||||||
pw_sum = pw_sum + pw;
|
params_.triangulation);
|
||||||
}
|
|
||||||
// average reprojected landmark
|
|
||||||
Point3 pw_avg = pw_sum / double(m);
|
|
||||||
|
|
||||||
double totalReprojError = 0;
|
|
||||||
|
|
||||||
// check if it lies in front of all cameras
|
|
||||||
for(size_t i = 0; i < m; i++) {
|
|
||||||
const Pose3& pose = cameras[i].pose();
|
|
||||||
const Point3& pl = pose.transform_to(pw_avg);
|
|
||||||
if (pl.z() <= 0) {
|
|
||||||
result_ = TriangulationResult::BehindCamera();
|
|
||||||
return result_;
|
|
||||||
}
|
|
||||||
|
|
||||||
// check landmark distance
|
|
||||||
if (params_.triangulation.landmarkDistanceThreshold > 0 &&
|
|
||||||
pl.norm() > params_.triangulation.landmarkDistanceThreshold) {
|
|
||||||
result_ = TriangulationResult::FarPoint();
|
|
||||||
return result_;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params_.triangulation.dynamicOutlierRejectionThreshold > 0) {
|
|
||||||
const StereoPoint2& zi = measured_[i];
|
|
||||||
StereoPoint2 reprojectionError(cameras[i].project(pw_avg) - zi);
|
|
||||||
totalReprojError += reprojectionError.vector().norm();
|
|
||||||
}
|
|
||||||
} // for
|
|
||||||
|
|
||||||
if (params_.triangulation.dynamicOutlierRejectionThreshold > 0
|
|
||||||
&& totalReprojError / m > params_.triangulation.dynamicOutlierRejectionThreshold) {
|
|
||||||
result_ = TriangulationResult::Outlier();
|
|
||||||
return result_;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(params_.triangulation.enableEPI) {
|
|
||||||
try {
|
|
||||||
pw_avg = triangulateNonlinear(cameras, measured_, pw_avg);
|
|
||||||
} catch(StereoCheiralityException& e) {
|
|
||||||
if(params_.verboseCheirality)
|
|
||||||
std::cout << "Cheirality Exception in SmartStereoProjectionFactor" << std::endl;
|
|
||||||
if(params_.throwCheirality)
|
|
||||||
throw;
|
|
||||||
result_ = TriangulationResult::BehindCamera();
|
|
||||||
return TriangulationResult::BehindCamera();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
result_ = TriangulationResult(pw_avg);
|
|
||||||
|
|
||||||
} // if retriangulate
|
|
||||||
return result_;
|
return result_;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// triangulate
|
/// triangulate
|
||||||
|
@ -570,6 +448,32 @@ public:
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
|
||||||
|
*/
|
||||||
|
virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
|
||||||
|
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
|
||||||
|
boost::optional<Matrix&> E = boost::none) const
|
||||||
|
{
|
||||||
|
// when using stereo cameras, some of the measurements might be missing:
|
||||||
|
for(size_t i=0; i < cameras.size(); i++){
|
||||||
|
const StereoPoint2& z = measured_.at(i);
|
||||||
|
if(std::isnan(z.uR())) // if the right pixel is invalid
|
||||||
|
{
|
||||||
|
if(Fs){ // delete influence of right point on jacobian Fs
|
||||||
|
MatrixZD& Fi = Fs->at(i);
|
||||||
|
for(size_t ii=0; ii<Dim; ii++)
|
||||||
|
Fi(1,ii) = 0.0;
|
||||||
|
}
|
||||||
|
if(E) // delete influence of right point on jacobian E
|
||||||
|
E->row(ZDim * i + 1) = Matrix::Zero(1, E->cols());
|
||||||
|
|
||||||
|
// set the corresponding entry of vector ue to zero
|
||||||
|
ue(ZDim * i + 1) = 0.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/** return the landmark */
|
/** return the landmark */
|
||||||
TriangulationResult point() const {
|
TriangulationResult point() const {
|
||||||
return result_;
|
return result_;
|
||||||
|
|
|
@ -66,9 +66,9 @@ public:
|
||||||
* @param params internal parameters of the smart factors
|
* @param params internal parameters of the smart factors
|
||||||
*/
|
*/
|
||||||
SmartStereoProjectionPoseFactor(const SharedNoiseModel& sharedNoiseModel,
|
SmartStereoProjectionPoseFactor(const SharedNoiseModel& sharedNoiseModel,
|
||||||
const SmartStereoProjectionParams& params =
|
const SmartStereoProjectionParams& params = SmartStereoProjectionParams(),
|
||||||
SmartStereoProjectionParams()) :
|
const boost::optional<Pose3> body_P_sensor = boost::none) :
|
||||||
Base(sharedNoiseModel, params) {
|
Base(sharedNoiseModel, params, body_P_sensor) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Virtual destructor */
|
/** Virtual destructor */
|
||||||
|
@ -102,7 +102,7 @@ public:
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
|
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
|
||||||
* @param mmeasurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
|
* @param measurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
|
||||||
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
|
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
|
||||||
* @param K the (known) camera calibration (same for all measurements)
|
* @param K the (known) camera calibration (same for all measurements)
|
||||||
*/
|
*/
|
||||||
|
@ -161,7 +161,11 @@ public:
|
||||||
Base::Cameras cameras;
|
Base::Cameras cameras;
|
||||||
size_t i=0;
|
size_t i=0;
|
||||||
for(const Key& k: this->keys_) {
|
for(const Key& k: this->keys_) {
|
||||||
const Pose3& pose = values.at<Pose3>(k);
|
Pose3 pose = values.at<Pose3>(k);
|
||||||
|
|
||||||
|
if (Base::body_P_sensor_)
|
||||||
|
pose = pose.compose(*(Base::body_P_sensor_));
|
||||||
|
|
||||||
StereoCamera camera(pose, K_all_[i++]);
|
StereoCamera camera(pose, K_all_[i++]);
|
||||||
cameras.push_back(camera);
|
cameras.push_back(camera);
|
||||||
}
|
}
|
||||||
|
|
|
@ -18,7 +18,7 @@
|
||||||
* @date Sept 2013
|
* @date Sept 2013
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// TODO #include <gtsam/slam/tests/smartFactorScenarios.h>
|
#include <gtsam/slam/tests/smartFactorScenarios.h>
|
||||||
#include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
|
#include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
|
||||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||||
#include <gtsam/slam/PoseTranslationPrior.h>
|
#include <gtsam/slam/PoseTranslationPrior.h>
|
||||||
|
@ -33,8 +33,6 @@ using namespace boost::assign;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
// make a realistic calibration matrix
|
// make a realistic calibration matrix
|
||||||
static double fov = 60; // degrees
|
|
||||||
static size_t w = 640, h = 480;
|
|
||||||
static double b = 1;
|
static double b = 1;
|
||||||
|
|
||||||
static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
|
static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
|
||||||
|
@ -62,6 +60,8 @@ static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more re
|
||||||
static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
|
static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
|
||||||
Point3(0.25, -0.10, 1.0));
|
Point3(0.25, -0.10, 1.0));
|
||||||
|
|
||||||
|
static double missing_uR = std::numeric_limits<double>::quiet_NaN();
|
||||||
|
|
||||||
vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
|
vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
|
||||||
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
|
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
|
||||||
|
|
||||||
|
@ -79,6 +79,35 @@ vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
|
||||||
|
|
||||||
LevenbergMarquardtParams lm_params;
|
LevenbergMarquardtParams lm_params;
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
TEST( SmartStereoProjectionPoseFactor, params) {
|
||||||
|
SmartStereoProjectionParams p;
|
||||||
|
|
||||||
|
// check default values and "get"
|
||||||
|
EXPECT(p.getLinearizationMode() == HESSIAN);
|
||||||
|
EXPECT(p.getDegeneracyMode() == IGNORE_DEGENERACY);
|
||||||
|
EXPECT_DOUBLES_EQUAL(p.getRetriangulationThreshold(), 1e-5, 1e-9);
|
||||||
|
EXPECT(p.getVerboseCheirality() == false);
|
||||||
|
EXPECT(p.getThrowCheirality() == false);
|
||||||
|
|
||||||
|
// check "set"
|
||||||
|
p.setLinearizationMode(JACOBIAN_SVD);
|
||||||
|
p.setDegeneracyMode(ZERO_ON_DEGENERACY);
|
||||||
|
p.setRankTolerance(100);
|
||||||
|
p.setEnableEPI(true);
|
||||||
|
p.setLandmarkDistanceThreshold(200);
|
||||||
|
p.setDynamicOutlierRejectionThreshold(3);
|
||||||
|
p.setRetriangulationThreshold(1e-2);
|
||||||
|
|
||||||
|
EXPECT(p.getLinearizationMode() == JACOBIAN_SVD);
|
||||||
|
EXPECT(p.getDegeneracyMode() == ZERO_ON_DEGENERACY);
|
||||||
|
EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().rankTolerance, 100, 1e-5);
|
||||||
|
EXPECT(p.getTriangulationParameters().enableEPI == true);
|
||||||
|
EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().landmarkDistanceThreshold, 200, 1e-5);
|
||||||
|
EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().dynamicOutlierRejectionThreshold, 3, 1e-5);
|
||||||
|
EXPECT_DOUBLES_EQUAL(p.getRetriangulationThreshold(), 1e-2, 1e-5);
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST( SmartStereoProjectionPoseFactor, Constructor) {
|
TEST( SmartStereoProjectionPoseFactor, Constructor) {
|
||||||
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
|
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
|
||||||
|
@ -151,6 +180,60 @@ TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
|
||||||
//EXPECT(assert_equal(zero(4),actual,1e-8));
|
//EXPECT(assert_equal(zero(4),actual,1e-8));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* *************************************************************************/
|
||||||
|
TEST( SmartProjectionPoseFactor, noiselessWithMissingMeasurements ) {
|
||||||
|
|
||||||
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||||
|
Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||||
|
Point3(0, 0, 1));
|
||||||
|
StereoCamera level_camera(level_pose, K2);
|
||||||
|
|
||||||
|
// create second camera 1 meter to the right of first camera
|
||||||
|
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||||
|
StereoCamera level_camera_right(level_pose_right, K2);
|
||||||
|
|
||||||
|
// landmark ~5 meters in front of camera
|
||||||
|
Point3 landmark(5, 0.5, 1.2);
|
||||||
|
|
||||||
|
// 1. Project two landmarks into two cameras and triangulate
|
||||||
|
StereoPoint2 level_uv = level_camera.project(landmark);
|
||||||
|
StereoPoint2 level_uv_right = level_camera_right.project(landmark);
|
||||||
|
StereoPoint2 level_uv_right_missing(level_uv_right.uL(),missing_uR,level_uv_right.v());
|
||||||
|
|
||||||
|
Values values;
|
||||||
|
values.insert(x1, level_pose);
|
||||||
|
values.insert(x2, level_pose_right);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor factor1(model);
|
||||||
|
factor1.add(level_uv, x1, K2);
|
||||||
|
factor1.add(level_uv_right_missing, x2, K2);
|
||||||
|
|
||||||
|
double actualError = factor1.error(values);
|
||||||
|
double expectedError = 0.0;
|
||||||
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||||
|
|
||||||
|
// TEST TRIANGULATION WITH MISSING VALUES: i) right pixel of second camera is missing:
|
||||||
|
SmartStereoProjectionPoseFactor::Cameras cameras = factor1.cameras(values);
|
||||||
|
double actualError2 = factor1.totalReprojectionError(cameras);
|
||||||
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
|
||||||
|
|
||||||
|
CameraSet<StereoCamera> cams;
|
||||||
|
cams += level_camera;
|
||||||
|
cams += level_camera_right;
|
||||||
|
TriangulationResult result = factor1.triangulateSafe(cams);
|
||||||
|
CHECK(result);
|
||||||
|
EXPECT(assert_equal(landmark, *result, 1e-7));
|
||||||
|
|
||||||
|
// TEST TRIANGULATION WITH MISSING VALUES: ii) right pixels of both cameras are missing:
|
||||||
|
SmartStereoProjectionPoseFactor factor2(model);
|
||||||
|
StereoPoint2 level_uv_missing(level_uv.uL(),missing_uR,level_uv.v());
|
||||||
|
factor2.add(level_uv_missing, x1, K2);
|
||||||
|
factor2.add(level_uv_right_missing, x2, K2);
|
||||||
|
result = factor2.triangulateSafe(cams);
|
||||||
|
CHECK(result);
|
||||||
|
EXPECT(assert_equal(landmark, *result, 1e-7));
|
||||||
|
}
|
||||||
|
|
||||||
/* *************************************************************************/
|
/* *************************************************************************/
|
||||||
TEST( SmartStereoProjectionPoseFactor, noisy ) {
|
TEST( SmartStereoProjectionPoseFactor, noisy ) {
|
||||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||||
|
@ -248,8 +331,6 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
||||||
|
|
||||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
NonlinearFactorGraph graph;
|
NonlinearFactorGraph graph;
|
||||||
graph.push_back(smartFactor1);
|
graph.push_back(smartFactor1);
|
||||||
graph.push_back(smartFactor2);
|
graph.push_back(smartFactor2);
|
||||||
|
@ -273,7 +354,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
||||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||||
|
|
||||||
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
|
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
|
||||||
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph.error(values), 1e-7);
|
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error
|
||||||
|
|
||||||
// get triangulated landmarks from smart factors
|
// get triangulated landmarks from smart factors
|
||||||
Point3 landmark1_smart = *smartFactor1->point();
|
Point3 landmark1_smart = *smartFactor1->point();
|
||||||
|
@ -335,7 +416,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
||||||
graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
|
graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
|
||||||
|
|
||||||
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
|
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
|
||||||
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph2.error(values), 1e-7);
|
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
|
||||||
|
|
||||||
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
|
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
|
||||||
Values result2 = optimizer2.optimize();
|
Values result2 = optimizer2.optimize();
|
||||||
|
@ -344,7 +425,192 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
||||||
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
|
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
/* *************************************************************************/
|
||||||
|
TEST( SmartStereoProjectionPoseFactor, body_P_sensor ) {
|
||||||
|
|
||||||
|
// camera has some displacement
|
||||||
|
Pose3 body_P_sensor = Pose3(Rot3::Ypr(-0.01, 0., -0.05), Point3(0.1, 0, 0.1));
|
||||||
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||||
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||||
|
StereoCamera cam1(pose1.compose(body_P_sensor), K2);
|
||||||
|
|
||||||
|
// create second camera 1 meter to the right of first camera
|
||||||
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||||
|
StereoCamera cam2(pose2.compose(body_P_sensor), K2);
|
||||||
|
|
||||||
|
// create third camera 1 meter above the first camera
|
||||||
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||||
|
StereoCamera cam3(pose3.compose(body_P_sensor), K2);
|
||||||
|
|
||||||
|
// three landmarks ~5 meters infront of camera
|
||||||
|
Point3 landmark1(5, 0.5, 1.2);
|
||||||
|
Point3 landmark2(5, -0.5, 1.2);
|
||||||
|
Point3 landmark3(3, 0, 3.0);
|
||||||
|
|
||||||
|
// 1. Project three landmarks into three cameras and triangulate
|
||||||
|
vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
|
||||||
|
cam2, cam3, landmark1);
|
||||||
|
vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
|
||||||
|
cam2, cam3, landmark2);
|
||||||
|
vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
|
||||||
|
cam2, cam3, landmark3);
|
||||||
|
|
||||||
|
vector<Key> views;
|
||||||
|
views.push_back(x1);
|
||||||
|
views.push_back(x2);
|
||||||
|
views.push_back(x3);
|
||||||
|
|
||||||
|
SmartStereoProjectionParams smart_params;
|
||||||
|
smart_params.triangulation.enableEPI = true;
|
||||||
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
|
||||||
|
smartFactor1->add(measurements_l1, views, K2);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
|
||||||
|
smartFactor2->add(measurements_l2, views, K2);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, smart_params, body_P_sensor));
|
||||||
|
smartFactor3->add(measurements_l3, views, K2);
|
||||||
|
|
||||||
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||||
|
|
||||||
|
NonlinearFactorGraph graph;
|
||||||
|
graph.push_back(smartFactor1);
|
||||||
|
graph.push_back(smartFactor2);
|
||||||
|
graph.push_back(smartFactor3);
|
||||||
|
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
||||||
|
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
||||||
|
|
||||||
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||||
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||||
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||||
|
Values values;
|
||||||
|
values.insert(x1, pose1);
|
||||||
|
values.insert(x2, pose2);
|
||||||
|
// initialize third pose with some noise, we expect it to move back to original pose3
|
||||||
|
values.insert(x3, pose3 * noise_pose);
|
||||||
|
EXPECT(
|
||||||
|
assert_equal(
|
||||||
|
Pose3(
|
||||||
|
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||||
|
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||||
|
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||||
|
|
||||||
|
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
|
||||||
|
EXPECT_DOUBLES_EQUAL(953392.32838422502, graph.error(values), 1e-7); // initial error
|
||||||
|
|
||||||
|
Values result;
|
||||||
|
gttic_(SmartStereoProjectionPoseFactor);
|
||||||
|
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
||||||
|
result = optimizer.optimize();
|
||||||
|
gttoc_(SmartStereoProjectionPoseFactor);
|
||||||
|
tictoc_finishedIteration_();
|
||||||
|
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
|
||||||
|
|
||||||
|
// result.print("results of 3 camera, 3 landmark optimization \n");
|
||||||
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
||||||
|
}
|
||||||
|
/* *************************************************************************/
|
||||||
|
TEST( SmartStereoProjectionPoseFactor, body_P_sensor_monocular ){
|
||||||
|
// make a realistic calibration matrix
|
||||||
|
double fov = 60; // degrees
|
||||||
|
size_t w=640,h=480;
|
||||||
|
|
||||||
|
Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
|
||||||
|
|
||||||
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||||
|
Pose3 cameraPose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // body poses
|
||||||
|
Pose3 cameraPose2 = cameraPose1 * Pose3(Rot3(), Point3(1,0,0));
|
||||||
|
Pose3 cameraPose3 = cameraPose1 * Pose3(Rot3(), Point3(0,-1,0));
|
||||||
|
|
||||||
|
SimpleCamera cam1(cameraPose1, *K); // with camera poses
|
||||||
|
SimpleCamera cam2(cameraPose2, *K);
|
||||||
|
SimpleCamera cam3(cameraPose3, *K);
|
||||||
|
|
||||||
|
// create arbitrary body_Pose_sensor (transforms from sensor to body)
|
||||||
|
Pose3 sensor_to_body = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(1, 1, 1)); // Pose3(); //
|
||||||
|
|
||||||
|
// These are the poses we want to estimate, from camera measurements
|
||||||
|
Pose3 bodyPose1 = cameraPose1.compose(sensor_to_body.inverse());
|
||||||
|
Pose3 bodyPose2 = cameraPose2.compose(sensor_to_body.inverse());
|
||||||
|
Pose3 bodyPose3 = cameraPose3.compose(sensor_to_body.inverse());
|
||||||
|
|
||||||
|
// three landmarks ~5 meters infront of camera
|
||||||
|
Point3 landmark1(5, 0.5, 1.2);
|
||||||
|
Point3 landmark2(5, -0.5, 1.2);
|
||||||
|
Point3 landmark3(5, 0, 3.0);
|
||||||
|
|
||||||
|
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
|
||||||
|
|
||||||
|
// Project three landmarks into three cameras
|
||||||
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||||
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||||
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||||
|
|
||||||
|
// Create smart factors
|
||||||
|
std::vector<Key> views;
|
||||||
|
views.push_back(x1);
|
||||||
|
views.push_back(x2);
|
||||||
|
views.push_back(x3);
|
||||||
|
|
||||||
|
// convert measurement to (degenerate) stereoPoint2 (with right pixel being NaN)
|
||||||
|
vector<StereoPoint2> measurements_cam1_stereo, measurements_cam2_stereo, measurements_cam3_stereo;
|
||||||
|
for(size_t k=0; k<measurements_cam1.size();k++)
|
||||||
|
measurements_cam1_stereo.push_back(StereoPoint2(measurements_cam1[k].x() , missing_uR , measurements_cam1[k].y()));
|
||||||
|
|
||||||
|
for(size_t k=0; k<measurements_cam2.size();k++)
|
||||||
|
measurements_cam2_stereo.push_back(StereoPoint2(measurements_cam2[k].x() , missing_uR , measurements_cam2[k].y()));
|
||||||
|
|
||||||
|
for(size_t k=0; k<measurements_cam3.size();k++)
|
||||||
|
measurements_cam3_stereo.push_back(StereoPoint2(measurements_cam3[k].x() , missing_uR , measurements_cam3[k].y()));
|
||||||
|
|
||||||
|
SmartStereoProjectionParams params;
|
||||||
|
params.setRankTolerance(1.0);
|
||||||
|
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
|
||||||
|
params.setEnableEPI(false);
|
||||||
|
|
||||||
|
Cal3_S2Stereo::shared_ptr Kmono(new Cal3_S2Stereo(fov,w,h,b));
|
||||||
|
SmartStereoProjectionPoseFactor smartFactor1(model, params, sensor_to_body);
|
||||||
|
smartFactor1.add(measurements_cam1_stereo, views, Kmono);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor smartFactor2(model, params, sensor_to_body);
|
||||||
|
smartFactor2.add(measurements_cam2_stereo, views, Kmono);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor smartFactor3(model, params, sensor_to_body);
|
||||||
|
smartFactor3.add(measurements_cam3_stereo, views, Kmono);
|
||||||
|
|
||||||
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||||
|
|
||||||
|
// Put all factors in factor graph, adding priors
|
||||||
|
NonlinearFactorGraph graph;
|
||||||
|
graph.push_back(smartFactor1);
|
||||||
|
graph.push_back(smartFactor2);
|
||||||
|
graph.push_back(smartFactor3);
|
||||||
|
graph.push_back(PriorFactor<Pose3>(x1, bodyPose1, noisePrior));
|
||||||
|
graph.push_back(PriorFactor<Pose3>(x2, bodyPose2, noisePrior));
|
||||||
|
|
||||||
|
// Check errors at ground truth poses
|
||||||
|
Values gtValues;
|
||||||
|
gtValues.insert(x1, bodyPose1);
|
||||||
|
gtValues.insert(x2, bodyPose2);
|
||||||
|
gtValues.insert(x3, bodyPose3);
|
||||||
|
double actualError = graph.error(gtValues);
|
||||||
|
double expectedError = 0.0;
|
||||||
|
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
|
||||||
|
|
||||||
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
|
||||||
|
Values values;
|
||||||
|
values.insert(x1, bodyPose1);
|
||||||
|
values.insert(x2, bodyPose2);
|
||||||
|
// initialize third pose with some noise, we expect it to move back to original pose3
|
||||||
|
values.insert(x3, bodyPose3*noise_pose);
|
||||||
|
|
||||||
|
LevenbergMarquardtParams lmParams;
|
||||||
|
Values result;
|
||||||
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||||
|
result = optimizer.optimize();
|
||||||
|
EXPECT(assert_equal(bodyPose3,result.at<Pose3>(x3)));
|
||||||
|
}
|
||||||
/* *************************************************************************/
|
/* *************************************************************************/
|
||||||
TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
|
TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
|
||||||
|
|
||||||
|
@ -411,6 +677,78 @@ TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
|
||||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* *************************************************************************/
|
||||||
|
TEST( SmartStereoProjectionPoseFactor, jacobianSVDwithMissingValues ) {
|
||||||
|
|
||||||
|
vector<Key> views;
|
||||||
|
views.push_back(x1);
|
||||||
|
views.push_back(x2);
|
||||||
|
views.push_back(x3);
|
||||||
|
|
||||||
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||||
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||||
|
StereoCamera cam1(pose1, K);
|
||||||
|
// create second camera 1 meter to the right of first camera
|
||||||
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||||
|
StereoCamera cam2(pose2, K);
|
||||||
|
// create third camera 1 meter above the first camera
|
||||||
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||||
|
StereoCamera cam3(pose3, K);
|
||||||
|
|
||||||
|
// three landmarks ~5 meters infront of camera
|
||||||
|
Point3 landmark1(5, 0.5, 1.2);
|
||||||
|
Point3 landmark2(5, -0.5, 1.2);
|
||||||
|
Point3 landmark3(3, 0, 3.0);
|
||||||
|
|
||||||
|
// 1. Project three landmarks into three cameras and triangulate
|
||||||
|
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
||||||
|
cam2, cam3, landmark1);
|
||||||
|
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
|
||||||
|
cam2, cam3, landmark2);
|
||||||
|
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
|
||||||
|
cam2, cam3, landmark3);
|
||||||
|
|
||||||
|
// DELETE SOME MEASUREMENTS
|
||||||
|
StereoPoint2 sp = measurements_cam1[1];
|
||||||
|
measurements_cam1[1] = StereoPoint2(sp.uL(), missing_uR, sp.v());
|
||||||
|
sp = measurements_cam2[2];
|
||||||
|
measurements_cam2[2] = StereoPoint2(sp.uL(), missing_uR, sp.v());
|
||||||
|
|
||||||
|
SmartStereoProjectionParams params;
|
||||||
|
params.setLinearizationMode(JACOBIAN_SVD);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1( new SmartStereoProjectionPoseFactor(model, params));
|
||||||
|
smartFactor1->add(measurements_cam1, views, K);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
|
||||||
|
smartFactor2->add(measurements_cam2, views, K);
|
||||||
|
|
||||||
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
|
||||||
|
smartFactor3->add(measurements_cam3, views, K);
|
||||||
|
|
||||||
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||||
|
|
||||||
|
NonlinearFactorGraph graph;
|
||||||
|
graph.push_back(smartFactor1);
|
||||||
|
graph.push_back(smartFactor2);
|
||||||
|
graph.push_back(smartFactor3);
|
||||||
|
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
||||||
|
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
||||||
|
|
||||||
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||||
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||||
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||||
|
Values values;
|
||||||
|
values.insert(x1, pose1);
|
||||||
|
values.insert(x2, pose2);
|
||||||
|
values.insert(x3, pose3 * noise_pose);
|
||||||
|
|
||||||
|
Values result;
|
||||||
|
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
||||||
|
result = optimizer.optimize();
|
||||||
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3),1e-7));
|
||||||
|
}
|
||||||
|
|
||||||
/* *************************************************************************/
|
/* *************************************************************************/
|
||||||
TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
|
TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
|
||||||
|
|
||||||
|
@ -562,7 +900,7 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
||||||
EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
|
EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
|
||||||
|
|
||||||
// dynamic outlier rejection is off
|
// dynamic outlier rejection is off
|
||||||
EXPECT_DOUBLES_EQUAL(6700, smartFactor4b->error(values), 1e-9);
|
EXPECT_DOUBLES_EQUAL(6147.3947317473921, smartFactor4b->error(values), 1e-9);
|
||||||
|
|
||||||
// Factors 1-3 should have valid point, factor 4 should not
|
// Factors 1-3 should have valid point, factor 4 should not
|
||||||
EXPECT(smartFactor1->point());
|
EXPECT(smartFactor1->point());
|
||||||
|
@ -1039,7 +1377,7 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/* *************************************************************************/
|
/* *************************************************************************/
|
||||||
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationNonDegenerate ) {
|
||||||
|
|
||||||
vector<Key> views;
|
vector<Key> views;
|
||||||
views.push_back(x1);
|
views.push_back(x1);
|
||||||
|
@ -1072,6 +1410,9 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
||||||
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
|
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
|
||||||
values);
|
values);
|
||||||
|
|
||||||
|
// check that it is non degenerate
|
||||||
|
EXPECT(smartFactor->isValid());
|
||||||
|
|
||||||
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
||||||
|
|
||||||
Values rotValues;
|
Values rotValues;
|
||||||
|
@ -1082,6 +1423,9 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
||||||
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
|
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
|
||||||
rotValues);
|
rotValues);
|
||||||
|
|
||||||
|
// check that it is non degenerate
|
||||||
|
EXPECT(smartFactor->isValid());
|
||||||
|
|
||||||
// Hessian is invariant to rotations in the nondegenerate case
|
// Hessian is invariant to rotations in the nondegenerate case
|
||||||
EXPECT(
|
EXPECT(
|
||||||
assert_equal(hessianFactor->information(),
|
assert_equal(hessianFactor->information(),
|
||||||
|
@ -1098,10 +1442,14 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
||||||
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
|
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
|
||||||
smartFactor->linearize(tranValues);
|
smartFactor->linearize(tranValues);
|
||||||
|
|
||||||
// Hessian is invariant to rotations and translations in the nondegenerate case
|
// Hessian is invariant to rotations and translations in the degenerate case
|
||||||
EXPECT(
|
EXPECT(
|
||||||
assert_equal(hessianFactor->information(),
|
assert_equal(hessianFactor->information(),
|
||||||
|
#ifdef GTSAM_USE_EIGEN_MKL
|
||||||
|
hessianFactorRotTran->information(), 1e-5));
|
||||||
|
#else
|
||||||
hessianFactorRotTran->information(), 1e-6));
|
hessianFactorRotTran->information(), 1e-6));
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue