Merged in feature/variadic-emplace_back (pull request #274)

Feature/variadic emplace_back

Approved-by: Jing Dong
release/4.3a0
Yao Chen 2017-03-12 05:19:15 +00:00 committed by Chris Beall
commit bd67779f74
48 changed files with 373 additions and 385 deletions

View File

@ -71,18 +71,14 @@ int main(int argc, char* argv[]) {
// add measurement factors
SharedDiagonal measurementNoise = Diagonal::Sigmas(Vector2(0.5, 0.5));
boost::shared_ptr<ResectioningFactor> factor;
graph.push_back(
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(55, 45), Point3(10, 10, 0)));
graph.push_back(
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(45, 45), Point3(-10, 10, 0)));
graph.push_back(
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(45, 55), Point3(-10, -10, 0)));
graph.push_back(
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(55, 55), Point3(10, -10, 0)));
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(55, 45), Point3(10, 10, 0));
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(45, 45), Point3(-10, 10, 0));
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(45, 55), Point3(-10, -10, 0));
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
Point2(55, 55), Point3(10, -10, 0));
/* 3. Create an initial estimate for the camera pose */
Values initial;

View File

@ -120,15 +120,15 @@ int main(int argc, char** argv) {
// For simplicity, we will use the same noise model for each odometry factor
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
// Create odometry (Between) factors between consecutive poses
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise);
// 2b. Add "GPS-like" measurements
// We will use our custom UnaryFactor for this.
noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
graph.emplace_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise);
graph.emplace_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise);
graph.emplace_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise);
graph.print("\nFactor Graph:\n"); // print
// 3. Create the data structure to hold the initialEstimate estimate to the solution

View File

@ -37,12 +37,12 @@ int main(int argc, char** argv) {
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
graph.emplace_shared<PriorFactor<Pose2> >(1, priorMean, priorNoise);
Pose2 odometry(2.0, 0.0, 0.0);
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, odometry, odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, odometry, odometryNoise);
graph.print("\nFactor Graph:\n"); // print
Values initial;

View File

@ -65,15 +65,15 @@ int main(int argc, char** argv) {
// A prior factor consists of a mean and a noise model (covariance matrix)
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
graph.emplace_shared<PriorFactor<Pose2> >(1, priorMean, priorNoise);
// Add odometry factors
Pose2 odometry(2.0, 0.0, 0.0);
// For simplicity, we will use the same noise model for each odometry factor
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
// Create odometry (Between) factors between consecutive poses
graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, odometry, odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, odometry, odometryNoise);
graph.print("\nFactor Graph:\n"); // print
// Create the data structure to hold the initialEstimate estimate to the solution

View File

@ -81,13 +81,13 @@ int main(int argc, char** argv) {
// Add a prior on pose x1 at the origin. A prior factor consists of a mean and a noise model (covariance matrix)
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
graph.add(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
graph.emplace_shared<PriorFactor<Pose2> >(x1, prior, priorNoise); // add directly to graph
// Add two odometry factors
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
graph.emplace_shared<BetweenFactor<Pose2> >(x1, x2, odometry, odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(x2, x3, odometry, odometryNoise);
// Add Range-Bearing measurements to two different landmarks
// create a noise model for the landmark measurements
@ -101,9 +101,9 @@ int main(int argc, char** argv) {
range32 = 2.0;
// Add Bearing-Range factors
graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x1, l1, bearing11, range11, measurementNoise);
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x2, l1, bearing21, range21, measurementNoise);
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x3, l2, bearing32, range32, measurementNoise);
// Print
graph.print("Factor Graph:\n");

View File

@ -72,23 +72,23 @@ int main(int argc, char** argv) {
// 2a. Add a prior on the first pose, setting it to the origin
// A prior factor consists of a mean and a noise model (covariance matrix)
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.add(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
graph.emplace_shared<PriorFactor<Pose2> >(1, Pose2(0, 0, 0), priorNoise);
// For simplicity, we will use the same noise model for odometry and loop closures
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
// 2b. Add odometry factors
// Create odometry (Between) factors between consecutive poses
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2, 0, 0 ), model);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2, 0, M_PI_2), model);
graph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(2, 0, M_PI_2), model);
graph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(2, 0, M_PI_2), model);
// 2c. Add the loop closure constraint
// This factor encodes the fact that we have returned to the same pose. In real systems,
// these constraints may be identified in many ways, such as appearance-based techniques
// with camera images. We will use another Between Factor to enforce this constraint:
graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
graph.emplace_shared<BetweenFactor<Pose2> >(5, 2, Pose2(2, 0, M_PI_2), model);
graph.print("\nFactor Graph:\n"); // print
// 3. Create the data structure to hold the initialEstimate estimate to the solution

View File

@ -33,19 +33,19 @@ int main (int argc, char** argv) {
// 2a. Add a prior on the first pose, setting it to the origin
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.push_back(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
graph.emplace_shared<PriorFactor<Pose2> >(1, Pose2(0, 0, 0), priorNoise);
// For simplicity, we will use the same noise model for odometry and loop closures
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
// 2b. Add odometry factors
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
graph.push_back(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
graph.push_back(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2, 0, 0 ), model);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2, 0, M_PI_2), model);
graph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(2, 0, M_PI_2), model);
graph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(2, 0, M_PI_2), model);
// 2c. Add the loop closure constraint
graph.push_back(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
graph.emplace_shared<BetweenFactor<Pose2> >(5, 2, Pose2(2, 0, M_PI_2), model);
// 3. Create the data structure to hold the initial estimate to the solution
// For illustrative purposes, these have been deliberately set to incorrect values

View File

@ -36,18 +36,18 @@ int main(int argc, char** argv) {
// 2a. Add a prior on the first pose, setting it to the origin
Pose2 prior(0.0, 0.0, 0.0); // prior at origin
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.push_back(PriorFactor<Pose2>(1, prior, priorNoise));
graph.emplace_shared<PriorFactor<Pose2> >(1, prior, priorNoise);
// 2b. Add odometry factors
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
graph.push_back(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
graph.push_back(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
// 2c. Add the loop closure constraint
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
graph.push_back(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model));
graph.emplace_shared<BetweenFactor<Pose2> >(5, 1, Pose2(0.0, 0.0, 0.0), model);
graph.print("\nFactor Graph:\n"); // print

View File

@ -75,14 +75,14 @@ int main(int argc, char* argv[]) {
// Add a prior on pose x1. This indirectly specifies where the origin is.
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', 0), poses[0], poseNoise); // add directly to graph
// Simulated measurements from each camera pose, adding them to the factor graph
for (size_t i = 0; i < poses.size(); ++i) {
SimpleCamera camera(poses[i], *K);
for (size_t j = 0; j < points.size(); ++j) {
Point2 measurement = camera.project(points[j]);
graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
}
}
@ -90,7 +90,7 @@ int main(int argc, char* argv[]) {
// Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance
// between the first camera and the first landmark. All other landmark positions are interpreted using this scale.
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
graph.emplace_shared<PriorFactor<Point3> >(Symbol('l', 0), points[0], pointNoise); // add directly to graph
graph.print("Factor Graph:\n");
// Create the data structure to hold the initial estimate to the solution

View File

@ -82,13 +82,13 @@ int main(int argc, char* argv[]) {
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
graph.push_back(PriorFactor<Pose3>(0, poses[0], noise));
graph.emplace_shared<PriorFactor<Pose3> >(0, poses[0], noise);
// Because the structure-from-motion problem has a scale ambiguity, the problem is
// still under-constrained. Here we add a prior on the second pose x1, so this will
// fix the scale by indicating the distance between x0 and x1.
// Because these two are fixed, the rest of the poses will be also be fixed.
graph.push_back(PriorFactor<Pose3>(1, poses[1], noise)); // add directly to graph
graph.emplace_shared<PriorFactor<Pose3> >(1, poses[1], noise); // add directly to graph
graph.print("Factor Graph:\n");

View File

@ -74,10 +74,10 @@ int main(int argc, char* argv[]) {
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
graph.push_back(PriorFactor<Pose3>(0, poses[0], noise));
graph.emplace_shared<PriorFactor<Pose3> >(0, poses[0], noise);
// Fix the scale ambiguity by adding a prior
graph.push_back(PriorFactor<Pose3>(1, poses[0], noise));
graph.emplace_shared<PriorFactor<Pose3> >(1, poses[0], noise);
// Create the initial estimate to the solution
Values initialEstimate;

View File

@ -59,15 +59,15 @@ int main (int argc, char* argv[]) {
for(const SfM_Measurement& m: track.measurements) {
size_t i = m.first;
Point2 uv = m.second;
graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
graph.emplace_shared<MyFactor>(uv, noise, C(i), P(j)); // note use of shorthand symbols C and P
}
j += 1;
}
// Add a prior on pose x1. This indirectly specifies where the origin is.
// and a prior on the position of the first landmark to fix the scale
graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1)));
graph.push_back(PriorFactor<Point3> (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));
graph.emplace_shared<PriorFactor<SfM_Camera> >(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1));
graph.emplace_shared<PriorFactor<Point3> > (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1));
// Create initial estimate
Values initial;

View File

@ -64,15 +64,15 @@ int main (int argc, char* argv[]) {
for(const SfM_Measurement& m: track.measurements) {
size_t i = m.first;
Point2 uv = m.second;
graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
graph.emplace_shared<MyFactor>(uv, noise, C(i), P(j)); // note use of shorthand symbols C and P
}
j += 1;
}
// Add a prior on pose x1. This indirectly specifies where the origin is.
// and a prior on the position of the first landmark to fix the scale
graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1)));
graph.push_back(PriorFactor<Point3> (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));
graph.emplace_shared<PriorFactor<SfM_Camera> >(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1));
graph.emplace_shared<PriorFactor<Point3> >(P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1));
// Create initial estimate
Values initial;

View File

@ -54,7 +54,7 @@ int main(int argc, char* argv[]) {
// Add a prior on pose x1.
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', 0), poses[0], poseNoise);
// Simulated measurements from each camera pose, adding them to the factor graph
Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
@ -65,17 +65,17 @@ int main(int argc, char* argv[]) {
Point2 measurement = camera.project(points[j]);
// The only real difference with the Visual SLAM example is that here we use a
// different factor type, that also calculates the Jacobian with respect to calibration
graph.push_back(GeneralSFMFactor2<Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0)));
graph.emplace_shared<GeneralSFMFactor2<Cal3_S2> >(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0));
}
}
// Add a prior on the position of the first landmark.
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
graph.emplace_shared<PriorFactor<Point3> >(Symbol('l', 0), points[0], pointNoise); // add directly to graph
// Add a prior on the calibration.
noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 0.1, 100, 100).finished());
graph.push_back(PriorFactor<Cal3_S2>(Symbol('K', 0), K, calNoise));
graph.emplace_shared<PriorFactor<Cal3_S2> >(Symbol('K', 0), K, calNoise);
// Create the initial estimate to the solution
// now including an estimate on the camera calibration parameters

View File

@ -39,7 +39,7 @@ int main(int argc, char** argv){
//create graph object, add first pose at origin with key '1'
NonlinearFactorGraph graph;
Pose3 first_pose;
graph.push_back(NonlinearEquality<Pose3>(1, Pose3()));
graph.emplace_shared<NonlinearEquality<Pose3> >(1, Pose3());
//create factor noise model with 3 sigmas of value 1
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1);
@ -47,14 +47,14 @@ int main(int argc, char** argv){
const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2));
//create and add stereo factors between first pose (key value 1) and the three landmarks
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(520, 480, 440), model, 1, 3, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(120, 80, 440), model, 1, 4, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(320, 280, 140), model, 1, 5, K));
graph.emplace_shared<GenericStereoFactor<Pose3,Point3> >(StereoPoint2(520, 480, 440), model, 1, 3, K);
graph.emplace_shared<GenericStereoFactor<Pose3,Point3> >(StereoPoint2(120, 80, 440), model, 1, 4, K);
graph.emplace_shared<GenericStereoFactor<Pose3,Point3> >(StereoPoint2(320, 280, 140), model, 1, 5, K);
//create and add stereo factors between second pose and the three landmarks
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(570, 520, 490), model, 2, 3, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(70, 20, 490), model, 2, 4, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(320, 270, 115), model, 2, 5, K));
graph.emplace_shared<GenericStereoFactor<Pose3,Point3> >(StereoPoint2(570, 520, 490), model, 2, 3, K);
graph.emplace_shared<GenericStereoFactor<Pose3,Point3> >(StereoPoint2(70, 20, 490), model, 2, 4, K);
graph.emplace_shared<GenericStereoFactor<Pose3,Point3> >(StereoPoint2(320, 270, 115), model, 2, 5, K);
//create Values object to contain initial estimates of camera poses and landmark locations
Values initial_estimate;

View File

@ -83,9 +83,9 @@ int main(int argc, char** argv){
cout << "Reading stereo factors" << endl;
//read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
graph.push_back(
GenericStereoFactor<Pose3, Point3>(StereoPoint2(uL, uR, v), model,
Symbol('x', x), Symbol('l', l), K));
graph.emplace_shared<
GenericStereoFactor<Pose3, Point3> >(StereoPoint2(uL, uR, v), model,
Symbol('x', x), Symbol('l', l), K);
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
if (!initial_estimate.exists(Symbol('l', l))) {
Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x));
@ -99,7 +99,7 @@ int main(int argc, char** argv){
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
graph.emplace_shared<NonlinearEquality<Pose3> >(Symbol('x',1),first_pose);
cout << "Optimizing" << endl;
//create Levenberg-Marquardt optimizer to optimize the factor graph

View File

@ -90,7 +90,7 @@ int main(int argc, char* argv[]) {
for (size_t j = 0; j < points.size(); ++j) {
SimpleCamera camera(poses[i], *K);
Point2 measurement = camera.project(points[j]);
graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
}
// Add an initial guess for the current pose
@ -104,11 +104,11 @@ int main(int argc, char* argv[]) {
if( i == 0) {
// Add a prior on pose x0
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3),Vector3::Constant(0.1)).finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', 0), poses[0], poseNoise);
// Add a prior on landmark l0
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
graph.emplace_shared<PriorFactor<Point3> >(Symbol('l', 0), points[0], pointNoise); // add directly to graph
// Add initial guesses to all observed landmarks
// Intentionally initialize the variables off from the ground truth

View File

@ -89,9 +89,8 @@ int main(int argc, char* argv[]) {
SimpleCamera camera(poses[i], *K);
Point2 measurement = camera.project(points[j]);
// Add measurement
graph.add(
GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, noise,
Symbol('x', i), Symbol('l', j), K));
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(measurement, noise,
Symbol('x', i), Symbol('l', j), K);
}
// Intentionally initialize the variables off from the ground truth
@ -109,12 +108,12 @@ int main(int argc, char* argv[]) {
// Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', 0), poses[0], poseNoise);
// Add a prior on landmark l0
noiseModel::Isotropic::shared_ptr pointNoise =
noiseModel::Isotropic::Sigma(3, 0.1);
graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise));
graph.emplace_shared<PriorFactor<Point3> >(Symbol('l', 0), points[0], pointNoise);
// Add initial guesses to all observed landmarks
Point3 noise(-0.25, 0.20, 0.15);

View File

@ -378,12 +378,12 @@ TEST( triangulation, StereotriangulateNonlinear ) {
NonlinearFactorGraph graph;
static SharedNoiseModel unit(noiseModel::Unit::Create(3));
graph.push_back(StereoFactor::shared_ptr(new StereoFactor(measurements[0], unit, Symbol('x',1), Symbol('l',1), stereoK)));
graph.push_back(StereoFactor::shared_ptr(new StereoFactor(measurements[1], unit, Symbol('x',2), Symbol('l',1), stereoK)));
graph.emplace_shared<StereoFactor>(measurements[0], unit, Symbol('x',1), Symbol('l',1), stereoK);
graph.emplace_shared<StereoFactor>(measurements[1], unit, Symbol('x',2), Symbol('l',1), stereoK);
const SharedDiagonal posePrior = noiseModel::Isotropic::Sigma(6, 1e-9);
graph.push_back(PriorFactor<Pose3>(Symbol('x',1), Pose3(m1), posePrior));
graph.push_back(PriorFactor<Pose3>(Symbol('x',2), Pose3(m2), posePrior));
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x',1), Pose3(m1), posePrior);
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x',2), Pose3(m2), posePrior);
LevenbergMarquardtOptimizer optimizer(graph, values);
Values result = optimizer.optimize();
@ -399,8 +399,8 @@ TEST( triangulation, StereotriangulateNonlinear ) {
NonlinearFactorGraph graph;
static SharedNoiseModel unit(noiseModel::Unit::Create(3));
graph.push_back(TriangulationFactor<StereoCamera>(cameras[0], measurements[0], unit, Symbol('l',1)));
graph.push_back(TriangulationFactor<StereoCamera>(cameras[1], measurements[1], unit, Symbol('l',1)));
graph.emplace_shared<TriangulationFactor<StereoCamera> >(cameras[0], measurements[0], unit, Symbol('l',1));
graph.emplace_shared<TriangulationFactor<StereoCamera> >(cameras[1], measurements[1], unit, Symbol('l',1));
LevenbergMarquardtOptimizer optimizer(graph, values);
Values result = optimizer.optimize();

View File

@ -426,7 +426,7 @@ TEST(Unit3, ErrorBetweenFactor) {
// Add prior factors.
SharedNoiseModel R_prior = noiseModel::Unit::Create(2);
for (size_t i = 0; i < data.size(); i++) {
graph.add(PriorFactor<Unit3>(U(i), data[i], R_prior));
graph.emplace_shared<PriorFactor<Unit3> >(U(i), data[i], R_prior);
}
// Add process factors using the dot product error function.

View File

@ -89,8 +89,8 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
const Pose3& pose_i = poses[i];
typedef PinholePose<CALIBRATION> Camera;
Camera camera_i(pose_i, sharedCal);
graph.push_back(TriangulationFactor<Camera> //
(camera_i, measurements[i], unit2, landmarkKey));
graph.emplace_shared<TriangulationFactor<Camera> > //
(camera_i, measurements[i], unit2, landmarkKey);
}
return std::make_pair(graph, values);
}
@ -116,8 +116,8 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
traits<typename CAMERA::Measurement>::dimension));
for (size_t i = 0; i < measurements.size(); i++) {
const CAMERA& camera_i = cameras[i];
graph.push_back(TriangulationFactor<CAMERA> //
(camera_i, measurements[i], unit, landmarkKey));
graph.emplace_shared<TriangulationFactor<CAMERA> > //
(camera_i, measurements[i], unit, landmarkKey);
}
return std::make_pair(graph, values);
}

View File

@ -22,16 +22,17 @@
#pragma once
#include <gtsam/base/Testable.h>
#include <gtsam/base/FastVector.h>
#include <gtsam/inference/Key.h>
#include <boost/serialization/nvp.hpp>
#include <boost/assign/list_inserter.hpp>
#include <boost/bind.hpp>
#include <boost/make_shared.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits.hpp>
#include <gtsam/base/Testable.h>
#include <gtsam/base/FastVector.h>
#include <gtsam/inference/Key.h>
#include <type_traits>
#include <utility>
namespace gtsam {
@ -151,7 +152,7 @@ namespace gtsam {
/** Add a factor directly using a shared_ptr */
template<class DERIVEDFACTOR>
typename boost::enable_if<boost::is_base_of<FactorType, DERIVEDFACTOR> >::type
typename std::enable_if<std::is_base_of<FactorType, DERIVEDFACTOR>::value>::type
push_back(boost::shared_ptr<DERIVEDFACTOR> factor) {
factors_.push_back(boost::shared_ptr<FACTOR>(factor)); }
@ -159,15 +160,22 @@ namespace gtsam {
void push_back(const sharedFactor& factor) {
factors_.push_back(factor); }
/** Emplace a factor */
template<class DERIVEDFACTOR, class... Args>
typename std::enable_if<std::is_base_of<FactorType, DERIVEDFACTOR>::value>::type
emplace_shared(Args&&... args) {
factors_.push_back(boost::make_shared<DERIVEDFACTOR>(std::forward<Args>(args)...));
}
/** push back many factors with an iterator over shared_ptr (factors are not copied) */
template<typename ITERATOR>
typename boost::enable_if<boost::is_base_of<FactorType, typename ITERATOR::value_type::element_type> >::type
typename std::enable_if<std::is_base_of<FactorType, typename ITERATOR::value_type::element_type>::value>::type
push_back(ITERATOR firstFactor, ITERATOR lastFactor) {
factors_.insert(end(), firstFactor, lastFactor); }
/** push back many factors as shared_ptr's in a container (factors are not copied) */
template<typename CONTAINER>
typename boost::enable_if<boost::is_base_of<FactorType, typename CONTAINER::value_type::element_type> >::type
typename std::enable_if<std::is_base_of<FactorType, typename CONTAINER::value_type::element_type>::value>::type
push_back(const CONTAINER& container) {
push_back(container.begin(), container.end());
}
@ -175,22 +183,24 @@ namespace gtsam {
/** push back a BayesTree as a collection of factors. NOTE: This should be hidden in derived
* classes in favor of a type-specialized version that calls this templated function. */
template<class CLIQUE>
typename boost::enable_if<boost::is_base_of<This, typename CLIQUE::FactorGraphType> >::type
typename std::enable_if<std::is_base_of<This, typename CLIQUE::FactorGraphType>::value>::type
push_back(const BayesTree<CLIQUE>& bayesTree) {
bayesTree.addFactorsToGraph(*this);
}
//#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V4
/** Add a factor by value, will be copy-constructed (use push_back with a shared_ptr to avoid
* the copy). */
template<class DERIVEDFACTOR>
typename boost::enable_if<boost::is_base_of<FactorType, DERIVEDFACTOR> >::type
typename std::enable_if<std::is_base_of<FactorType, DERIVEDFACTOR>::value>::type
push_back(const DERIVEDFACTOR& factor) {
factors_.push_back(boost::make_shared<DERIVEDFACTOR>(factor));
}
//#endif
/** push back many factors with an iterator over plain factors (factors are copied) */
template<typename ITERATOR>
typename boost::enable_if<boost::is_base_of<FactorType, typename ITERATOR::value_type> >::type
typename std::enable_if<std::is_base_of<FactorType, typename ITERATOR::value_type>::value>::type
push_back(ITERATOR firstFactor, ITERATOR lastFactor) {
for (ITERATOR f = firstFactor; f != lastFactor; ++f)
push_back(*f);
@ -198,14 +208,14 @@ namespace gtsam {
/** push back many factors as non-pointer objects in a container (factors are copied) */
template<typename CONTAINER>
typename boost::enable_if<boost::is_base_of<FactorType, typename CONTAINER::value_type> >::type
typename std::enable_if<std::is_base_of<FactorType, typename CONTAINER::value_type>::value>::type
push_back(const CONTAINER& container) {
push_back(container.begin(), container.end());
}
/** Add a factor directly using a shared_ptr */
template<class DERIVEDFACTOR>
typename boost::enable_if<boost::is_base_of<FactorType, DERIVEDFACTOR>,
typename std::enable_if<std::is_base_of<FactorType, DERIVEDFACTOR>::value,
boost::assign::list_inserter<RefCallPushBack<This> > >::type
operator+=(boost::shared_ptr<DERIVEDFACTOR> factor) {
return boost::assign::make_list_inserter(RefCallPushBack<This>(*this))(factor);
@ -226,7 +236,7 @@ namespace gtsam {
/** Add a factor directly using a shared_ptr */
template<class DERIVEDFACTOR>
typename boost::enable_if<boost::is_base_of<FactorType, DERIVEDFACTOR> >::type
typename std::enable_if<std::is_base_of<FactorType, DERIVEDFACTOR>::value>::type
add(boost::shared_ptr<DERIVEDFACTOR> factor) {
push_back(factor);
}
@ -355,4 +365,4 @@ namespace gtsam {
} // namespace gtsam
#include <gtsam/inference/FactorGraph-inst.h>
#include <gtsam/inference/FactorGraph-inst.h>

View File

@ -781,8 +781,8 @@ TEST(ImuFactor, bodyPSensorWithBias) {
pim.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factors
graph.add(ImuFactor(X(i - 1), V(i - 1), X(i), V(i), B(i - 1), pim));
graph.add(BetweenFactor<Bias>(B(i - 1), B(i), zeroBias, biasNoiseModel));
graph.emplace_shared<ImuFactor>(X(i - 1), V(i - 1), X(i), V(i), B(i - 1), pim);
graph.emplace_shared<BetweenFactor<Bias> >(B(i - 1), B(i), zeroBias, biasNoiseModel);
values.insert(X(i), Pose3());
values.insert(V(i), zeroVel);

View File

@ -120,9 +120,8 @@ NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph) {
boost::shared_ptr<PriorFactor<Pose3> > pose3Prior =
boost::dynamic_pointer_cast<PriorFactor<Pose3> >(factor);
if (pose3Prior)
pose3Graph.add(
BetweenFactor<Pose3>(keyAnchor, pose3Prior->keys()[0],
pose3Prior->prior(), pose3Prior->noiseModel()));
pose3Graph.emplace_shared<BetweenFactor<Pose3> >(keyAnchor, pose3Prior->keys()[0],
pose3Prior->prior(), pose3Prior->noiseModel());
}
return pose3Graph;
}
@ -330,7 +329,7 @@ Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
// add prior
noiseModel::Unit::shared_ptr priorModel = noiseModel::Unit::Create(6);
initialPose.insert(keyAnchor, Pose3());
pose3graph.add(PriorFactor<Pose3>(keyAnchor, Pose3(), priorModel));
pose3graph.emplace_shared<PriorFactor<Pose3> >(keyAnchor, Pose3(), priorModel);
// Create optimizer
GaussNewtonParams params;

View File

@ -90,8 +90,8 @@ TEST( AntiFactor, EquivalentBayesNet)
SharedNoiseModel sigma(noiseModel::Unit::Create(6));
NonlinearFactorGraph graph;
graph.push_back(PriorFactor<Pose3>(1, pose1, sigma));
graph.push_back(BetweenFactor<Pose3>(1, 2, pose1.between(pose2), sigma));
graph.emplace_shared<PriorFactor<Pose3> >(1, pose1, sigma);
graph.emplace_shared<BetweenFactor<Pose3> >(1, 2, pose1.between(pose2), sigma);
// Create a configuration corresponding to the ground truth
Values values;

View File

@ -112,18 +112,18 @@ TEST( dataSet, readG2o)
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions(Vector3(44.721360, 44.721360, 30.901699));
NonlinearFactorGraph expectedGraph;
expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(0, 1, Pose2(1.030390, 0.011350, -0.081596), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(1.013900, -0.058639, -0.220291), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(1.027650, -0.007456, -0.043627), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(1.016030, 0.014565, -0.030930), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 6, Pose2(1.023890, 0.006808, -0.007452), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(6, 7, Pose2(0.957734, 0.003159, 0.082836), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(8, 9, Pose2(1.023440, 0.013984, -0.127624), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(9,10, Pose2(1.003350, 0.022250, -0.195918), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 9, Pose2(0.033943, 0.032439, 3.073637), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3,10, Pose2(0.044020, 0.988477, -1.553511), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
@ -164,27 +164,27 @@ TEST( dataSet, readG2o3D)
Point3 p01 = Point3(1.001367, 0.015390, 0.004948);
Rot3 R01 = Rot3::Quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
expectedGraph.add(BetweenFactor<Pose3>(0, 1, Pose3(R01,p01), model));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(0, 1, Pose3(R01,p01), model);
Point3 p12 = Point3(0.523923, 0.776654, 0.326659);
Rot3 R12 = Rot3::Quaternion(0.105373 , 0.311512, 0.656877, -0.678505 );
expectedGraph.add(BetweenFactor<Pose3>(1, 2, Pose3(R12,p12), model));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, Pose3(R12,p12), model);
Point3 p23 = Point3(0.910927, 0.055169, -0.411761);
Rot3 R23 = Rot3::Quaternion(0.568551 , 0.595795, -0.561677, 0.079353 );
expectedGraph.add(BetweenFactor<Pose3>(2, 3, Pose3(R23,p23), model));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, Pose3(R23,p23), model);
Point3 p34 = Point3(0.775288, 0.228798, -0.596923);
Rot3 R34 = Rot3::Quaternion(0.542221 , -0.592077, 0.303380, -0.513226 );
expectedGraph.add(BetweenFactor<Pose3>(3, 4, Pose3(R34,p34), model));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, Pose3(R34,p34), model);
Point3 p14 = Point3(-0.577841, 0.628016, -0.543592);
Rot3 R14 = Rot3::Quaternion(0.327419 , -0.125250, -0.534379, 0.769122 );
expectedGraph.add(BetweenFactor<Pose3>(1, 4, Pose3(R14,p14), model));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 4, Pose3(R14,p14), model);
Point3 p30 = Point3(-0.623267, 0.086928, 0.773222);
Rot3 R30 = Rot3::Quaternion(0.083672 , 0.104639, 0.627755, 0.766795 );
expectedGraph.add(BetweenFactor<Pose3>(3, 0, Pose3(R30,p30), model));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 0, Pose3(R30,p30), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
@ -224,7 +224,7 @@ TEST( dataSet, readG2o3DNonDiagonalNoise)
NonlinearFactorGraph expectedGraph;
Point3 p01 = Point3(1.001367, 0.015390, 0.004948);
Rot3 R01 = Rot3::Quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
expectedGraph.add(BetweenFactor<Pose3>(0, 1, Pose3(R01,p01), model));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(0, 1, Pose3(R01,p01), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-2));
}
@ -242,18 +242,18 @@ TEST( dataSet, readG2oHuber)
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.345), baseModel);
NonlinearFactorGraph expectedGraph;
expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(0, 1, Pose2(1.030390, 0.011350, -0.081596), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(1.013900, -0.058639, -0.220291), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(1.027650, -0.007456, -0.043627), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(1.016030, 0.014565, -0.030930), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 6, Pose2(1.023890, 0.006808, -0.007452), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(6, 7, Pose2(0.957734, 0.003159, 0.082836), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(8, 9, Pose2(1.023440, 0.013984, -0.127624), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(9,10, Pose2(1.003350, 0.022250, -0.195918), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 9, Pose2(0.033943, 0.032439, 3.073637), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3,10, Pose2(0.044020, 0.988477, -1.553511), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
@ -270,18 +270,18 @@ TEST( dataSet, readG2oTukey)
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel);
NonlinearFactorGraph expectedGraph;
expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(0, 1, Pose2(1.030390, 0.011350, -0.081596), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(1.013900, -0.058639, -0.220291), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(1.027650, -0.007456, -0.043627), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(1.016030, 0.014565, -0.030930), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 6, Pose2(1.023890, 0.006808, -0.007452), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(6, 7, Pose2(0.957734, 0.003159, 0.082836), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(8, 9, Pose2(1.023440, 0.013984, -0.127624), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(9,10, Pose2(1.003350, 0.022250, -0.195918), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 9, Pose2(0.033943, 0.032439, 3.073637), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3,10, Pose2(0.044020, 0.988477, -1.553511), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}

View File

@ -178,7 +178,7 @@ TEST (EssentialMatrixFactor, minimization) {
// Noise sigma is 1cm, assuming metric measurements
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
graph.add(EssentialMatrixFactor(1, pA(i), pB(i), model1));
graph.emplace_shared<EssentialMatrixFactor>(1, pA(i), pB(i), model1);
// Check error at ground truth
Values truth;
@ -251,7 +251,7 @@ TEST (EssentialMatrixFactor2, minimization) {
// Noise sigma is 1cm, assuming metric measurements
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2));
graph.emplace_shared<EssentialMatrixFactor2>(100, i, pA(i), pB(i), model2);
// Check error at ground truth
Values truth;
@ -323,7 +323,7 @@ TEST (EssentialMatrixFactor3, minimization) {
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
// but now we specify the rotation bRc
graph.add(EssentialMatrixFactor3(100, i, pA(i), pB(i), cRb, model2));
graph.emplace_shared<EssentialMatrixFactor3>(100, i, pA(i), pB(i), cRb, model2);
// Check error at ground truth
Values truth;
@ -391,7 +391,7 @@ TEST (EssentialMatrixFactor, extraMinimization) {
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
graph.add(EssentialMatrixFactor(1, pA(i), pB(i), model1, K));
graph.emplace_shared<EssentialMatrixFactor>(1, pA(i), pB(i), model1, K);
// Check error at ground truth
Values truth;
@ -465,7 +465,7 @@ TEST (EssentialMatrixFactor2, extraMinimization) {
// Noise sigma is 1, assuming pixel measurements
NonlinearFactorGraph graph;
for (size_t i = 0; i < data.number_tracks(); i++)
graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2, K));
graph.emplace_shared<EssentialMatrixFactor2>(100, i, pA(i), pB(i), model2, K);
// Check error at ground truth
Values truth;

View File

@ -368,9 +368,9 @@ TEST( GeneralSFMFactor, optimize_varK_BA ) {
graph.addCameraConstraint(0, cameras[0]);
// Constrain the scale of the problem with a soft range factor of 1m between the cameras
graph.push_back(
RangeFactor<GeneralCamera, GeneralCamera>(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 10.)));
graph.emplace_shared<
RangeFactor<GeneralCamera, GeneralCamera> >(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 10.));
const double reproj_error = 1e-5;
@ -385,12 +385,12 @@ TEST(GeneralSFMFactor, GeneralCameraPoseRange) {
// Tests range factor between a GeneralCamera and a Pose3
Graph graph;
graph.addCameraConstraint(0, GeneralCamera());
graph.push_back(
RangeFactor<GeneralCamera, Pose3>(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 1.)));
graph.push_back(
PriorFactor<Pose3>(X(1), Pose3(Rot3(), Point3(1., 0., 0.)),
noiseModel::Isotropic::Sigma(6, 1.)));
graph.emplace_shared<
RangeFactor<GeneralCamera, Pose3> >(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 1.));
graph.emplace_shared<
PriorFactor<Pose3> >(X(1), Pose3(Rot3(), Point3(1., 0., 0.)),
noiseModel::Isotropic::Sigma(6, 1.));
Values init;
init.insert(X(0), GeneralCamera());
@ -413,15 +413,15 @@ TEST(GeneralSFMFactor, GeneralCameraPoseRange) {
TEST(GeneralSFMFactor, CalibratedCameraPoseRange) {
// Tests range factor between a CalibratedCamera and a Pose3
NonlinearFactorGraph graph;
graph.push_back(
PriorFactor<CalibratedCamera>(X(0), CalibratedCamera(),
noiseModel::Isotropic::Sigma(6, 1.)));
graph.push_back(
RangeFactor<CalibratedCamera, Pose3>(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 1.)));
graph.push_back(
PriorFactor<Pose3>(X(1), Pose3(Rot3(), Point3(1., 0., 0.)),
noiseModel::Isotropic::Sigma(6, 1.)));
graph.emplace_shared<
PriorFactor<CalibratedCamera> >(X(0), CalibratedCamera(),
noiseModel::Isotropic::Sigma(6, 1.));
graph.emplace_shared<
RangeFactor<CalibratedCamera, Pose3> >(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 1.));
graph.emplace_shared<
PriorFactor<Pose3> >(X(1), Pose3(Rot3(), Point3(1., 0., 0.)),
noiseModel::Isotropic::Sigma(6, 1.));
Values init;
init.insert(X(0), CalibratedCamera());

View File

@ -369,9 +369,9 @@ TEST( GeneralSFMFactor_Cal3Bundler, optimize_varK_BA ) {
graph.addCameraConstraint(0, cameras[0]);
// Constrain the scale of the problem with a soft range factor of 1m between the cameras
graph.push_back(
RangeFactor<GeneralCamera, GeneralCamera>(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 10.)));
graph.emplace_shared<
RangeFactor<GeneralCamera, GeneralCamera> >(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 10.));
const double reproj_error = 1e-5;

View File

@ -136,15 +136,15 @@ TEST( ReferenceFrameFactor, converge_trans ) {
// Pose2 trans = transIdeal * Pose2(-200.0, 100.0, 2.0); // beyond pi/2 - fails
NonlinearFactorGraph graph;
graph.push_back(PointReferenceFrameFactor(lB1, tA1, lA1));
graph.push_back(PointReferenceFrameFactor(lB2, tA1, lA2));
graph.emplace_shared<PointReferenceFrameFactor>(lB1, tA1, lA1);
graph.emplace_shared<PointReferenceFrameFactor>(lB2, tA1, lA2);
// hard constraints on points
double error_gain = 1000.0;
graph.push_back(NonlinearEquality<gtsam::Point2>(lA1, local1, error_gain));
graph.push_back(NonlinearEquality<gtsam::Point2>(lA2, local2, error_gain));
graph.push_back(NonlinearEquality<gtsam::Point2>(lB1, global1, error_gain));
graph.push_back(NonlinearEquality<gtsam::Point2>(lB2, global2, error_gain));
graph.emplace_shared<NonlinearEquality<gtsam::Point2> >(lA1, local1, error_gain);
graph.emplace_shared<NonlinearEquality<gtsam::Point2> >(lA2, local2, error_gain);
graph.emplace_shared<NonlinearEquality<gtsam::Point2> >(lB1, global1, error_gain);
graph.emplace_shared<NonlinearEquality<gtsam::Point2> >(lB2, global2, error_gain);
// create initial estimate
Values init;
@ -186,9 +186,9 @@ TEST( ReferenceFrameFactor, converge_local ) {
NonlinearFactorGraph graph;
double error_gain = 1000.0;
graph.push_back(PointReferenceFrameFactor(lB1, tA1, lA1));
graph.push_back(NonlinearEquality<gtsam::Point2>(lB1, global, error_gain));
graph.push_back(NonlinearEquality<gtsam::Pose2>(tA1, trans, error_gain));
graph.emplace_shared<PointReferenceFrameFactor>(lB1, tA1, lA1);
graph.emplace_shared<NonlinearEquality<gtsam::Point2> >(lB1, global, error_gain);
graph.emplace_shared<NonlinearEquality<gtsam::Pose2> >(tA1, trans, error_gain);
// create initial estimate
Values init;
@ -222,9 +222,9 @@ TEST( ReferenceFrameFactor, converge_global ) {
NonlinearFactorGraph graph;
double error_gain = 1000.0;
graph.push_back(PointReferenceFrameFactor(lB1, tA1, lA1));
graph.push_back(NonlinearEquality<gtsam::Point2>(lA1, local, error_gain));
graph.push_back(NonlinearEquality<gtsam::Pose2>(tA1, trans, error_gain));
graph.emplace_shared<PointReferenceFrameFactor>(lB1, tA1, lA1);
graph.emplace_shared<NonlinearEquality<gtsam::Point2> >(lA1, local, error_gain);
graph.emplace_shared<NonlinearEquality<gtsam::Pose2> >(tA1, trans, error_gain);
// create initial estimate
Values init;

View File

@ -89,9 +89,9 @@ TEST (RotateFactor, minimization) {
// Let's try to recover the correct iRc by minimizing
NonlinearFactorGraph graph;
Model model = noiseModel::Isotropic::Sigma(3, 0.01);
graph.add(RotateFactor(1, i1Ri2, c1Zc2, model));
graph.add(RotateFactor(1, i2Ri3, c2Zc3, model));
graph.add(RotateFactor(1, i3Ri4, c3Zc4, model));
graph.emplace_shared<RotateFactor>(1, i1Ri2, c1Zc2, model);
graph.emplace_shared<RotateFactor>(1, i2Ri3, c2Zc3, model);
graph.emplace_shared<RotateFactor>(1, i3Ri4, c3Zc4, model);
// Check error at ground truth
Values truth;
@ -162,9 +162,9 @@ TEST (RotateDirectionsFactor, minimization) {
// Let's try to recover the correct iRc by minimizing
NonlinearFactorGraph graph;
Model model = noiseModel::Isotropic::Sigma(2, 0.01);
graph.add(RotateDirectionsFactor(1, p1, z1, model));
graph.add(RotateDirectionsFactor(1, p2, z2, model));
graph.add(RotateDirectionsFactor(1, p3, z3, model));
graph.emplace_shared<RotateDirectionsFactor>(1, p1, z1, model);
graph.emplace_shared<RotateDirectionsFactor>(1, p2, z2, model);
graph.emplace_shared<RotateDirectionsFactor>(1, p3, z3, model);
// Check error at ground truth
Values truth;

View File

@ -209,8 +209,8 @@ TEST( SmartProjectionCameraFactor, perturbPoseAndOptimize ) {
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6 + 5, 1e-5);
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
graph.emplace_shared<PriorFactor<Camera> >(c1, cam1, noisePrior);
graph.emplace_shared<PriorFactor<Camera> >(c2, cam2, noisePrior);
// Create initial estimate
Values initial;
@ -321,8 +321,8 @@ TEST( SmartProjectionCameraFactor, perturbPoseAndOptimizeFromSfM_tracks ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
graph.emplace_shared<PriorFactor<Camera> >(c1, cam1, noisePrior);
graph.emplace_shared<PriorFactor<Camera> >(c2, cam2, noisePrior);
Values values;
values.insert(c1, cam1);
@ -398,8 +398,8 @@ TEST( SmartProjectionCameraFactor, perturbCamerasAndOptimize ) {
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.push_back(smartFactor5);
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
graph.emplace_shared<PriorFactor<Camera> >(c1, cam1, noisePrior);
graph.emplace_shared<PriorFactor<Camera> >(c2, cam2, noisePrior);
Values values;
values.insert(c1, cam1);
@ -476,8 +476,8 @@ TEST( SmartProjectionCameraFactor, Cal3Bundler ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
graph.emplace_shared<PriorFactor<Camera> >(c1, cam1, noisePrior);
graph.emplace_shared<PriorFactor<Camera> >(c2, cam2, noisePrior);
Values values;
values.insert(c1, cam1);
@ -552,8 +552,8 @@ TEST( SmartProjectionCameraFactor, Cal3Bundler2 ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
graph.emplace_shared<PriorFactor<Camera> >(c1, cam1, noisePrior);
graph.emplace_shared<PriorFactor<Camera> >(c2, cam2, noisePrior);
Values values;
values.insert(c1, cam1);

View File

@ -262,8 +262,8 @@ TEST( SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform ){
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, bodyPose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, bodyPose2, noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, bodyPose1, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, bodyPose2, noisePrior);
// Check errors at ground truth poses
Values gtValues;
@ -319,8 +319,8 @@ TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, cam2.pose(), noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, cam2.pose(), noisePrior);
Values groundTruth;
groundTruth.insert(x1, cam1.pose());
@ -547,8 +547,8 @@ TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, cam2.pose(), noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, cam2.pose(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -614,8 +614,8 @@ TEST( SmartProjectionPoseFactor, jacobianSVD ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, cam2.pose(), noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, cam2.pose(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -675,8 +675,8 @@ TEST( SmartProjectionPoseFactor, landmarkDistance ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, cam2.pose(), noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, cam2.pose(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -747,8 +747,8 @@ TEST( SmartProjectionPoseFactor, dynamicOutlierRejection ) {
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, cam2.pose(), noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, cam2.pose(), noisePrior);
Values values;
values.insert(x1, cam1.pose());
@ -800,8 +800,8 @@ TEST( SmartProjectionPoseFactor, jacobianQ ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, cam2.pose(), noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, cam2.pose(), noisePrior);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
@ -830,30 +830,21 @@ TEST( SmartProjectionPoseFactor, 3poses_projection_factor ) {
NonlinearFactorGraph graph;
// Project three landmarks into three cameras
graph.push_back(
ProjectionFactor(cam1.project(landmark1), model, x1, L(1), sharedK2));
graph.push_back(
ProjectionFactor(cam2.project(landmark1), model, x2, L(1), sharedK2));
graph.push_back(
ProjectionFactor(cam3.project(landmark1), model, x3, L(1), sharedK2));
graph.emplace_shared<ProjectionFactor>(cam1.project(landmark1), model, x1, L(1), sharedK2);
graph.emplace_shared<ProjectionFactor>(cam2.project(landmark1), model, x2, L(1), sharedK2);
graph.emplace_shared<ProjectionFactor>(cam3.project(landmark1), model, x3, L(1), sharedK2);
graph.push_back(
ProjectionFactor(cam1.project(landmark2), model, x1, L(2), sharedK2));
graph.push_back(
ProjectionFactor(cam2.project(landmark2), model, x2, L(2), sharedK2));
graph.push_back(
ProjectionFactor(cam3.project(landmark2), model, x3, L(2), sharedK2));
graph.emplace_shared<ProjectionFactor>(cam1.project(landmark2), model, x1, L(2), sharedK2);
graph.emplace_shared<ProjectionFactor>(cam2.project(landmark2), model, x2, L(2), sharedK2);
graph.emplace_shared<ProjectionFactor>(cam3.project(landmark2), model, x3, L(2), sharedK2);
graph.push_back(
ProjectionFactor(cam1.project(landmark3), model, x1, L(3), sharedK2));
graph.push_back(
ProjectionFactor(cam2.project(landmark3), model, x2, L(3), sharedK2));
graph.push_back(
ProjectionFactor(cam3.project(landmark3), model, x3, L(3), sharedK2));
graph.emplace_shared<ProjectionFactor>(cam1.project(landmark3), model, x1, L(3), sharedK2);
graph.emplace_shared<ProjectionFactor>(cam2.project(landmark3), model, x2, L(3), sharedK2);
graph.emplace_shared<ProjectionFactor>(cam3.project(landmark3), model, x3, L(3), sharedK2);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
graph.push_back(PriorFactor<Pose3>(x1, level_pose, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose_right, noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, level_pose, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, pose_right, noisePrior);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
@ -1000,11 +991,9 @@ TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_fac
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(
PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
graph.push_back(
PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
@ -1068,11 +1057,9 @@ TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor )
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(
PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
graph.push_back(
PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -1286,8 +1273,8 @@ TEST( SmartProjectionPoseFactor, Cal3Bundler ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, cam2.pose(), noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, cam2.pose(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -1362,11 +1349,9 @@ TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, cam1.pose(), noisePrior));
graph.push_back(
PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
graph.push_back(
PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
graph.emplace_shared<PriorFactor<Pose3> >(x1, cam1.pose(), noisePrior);
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),

View File

@ -185,11 +185,11 @@ TEST( StereoFactor, singlePoint)
{
NonlinearFactorGraph graph;
graph.push_back(NonlinearEquality<Pose3>(X(1), camera1));
graph.emplace_shared<NonlinearEquality<Pose3> >(X(1), camera1);
StereoPoint2 measurement(320, 320.0-50, 240);
// arguments: measurement, sigma, cam#, measurement #, K, baseline (m)
graph.push_back(GenericStereoFactor<Pose3, Point3>(measurement, model, X(1), L(1), K));
graph.emplace_shared<GenericStereoFactor<Pose3, Point3> >(measurement, model, X(1), L(1), K);
// Create a configuration corresponding to the ground truth
Values values;

View File

@ -61,7 +61,7 @@ int main(int argc, char** argv){
initial_estimate.insert(Symbol('K', 0), *noisy_K);
noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 1e-5, 100, 100).finished());
graph.push_back(PriorFactor<Cal3_S2>(Symbol('K', 0), *noisy_K, calNoise));
graph.emplace_shared<PriorFactor<Cal3_S2> >(Symbol('K', 0), *noisy_K, calNoise);
ifstream pose_file(pose_loc.c_str());
@ -77,7 +77,7 @@ int main(int argc, char** argv){
}
noiseModel::Isotropic::shared_ptr poseNoise = noiseModel::Isotropic::Sigma(6, 0.01);
graph.push_back(PriorFactor<Pose3>(Symbol('x', pose_id), Pose3(m), poseNoise));
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', pose_id), Pose3(m), poseNoise);
// camera and landmark keys
size_t x, l;
@ -89,9 +89,9 @@ int main(int argc, char** argv){
cout << "Reading stereo factors" << endl;
//read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
// graph.push_back( GenericStereoFactor<Pose3, Point3>(StereoPoint2(uL, uR, v), model, Symbol('x', x), Symbol('l', l), K));
// graph.emplace_shared<GenericStereoFactor<Pose3, Point3> >(StereoPoint2(uL, uR, v), model, Symbol('x', x), Symbol('l', l), K);
graph.push_back(GeneralSFMFactor2<Cal3_S2>(Point2(uL,v), model, Symbol('x', x), Symbol('l', l), Symbol('K', 0)));
graph.emplace_shared<GeneralSFMFactor2<Cal3_S2> >(Point2(uL,v), model, Symbol('x', x), Symbol('l', l), Symbol('K', 0));
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
@ -107,7 +107,7 @@ int main(int argc, char** argv){
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
graph.emplace_shared<NonlinearEquality<Pose3> >(Symbol('x',1),first_pose);
cout << "Optimizing" << endl;
LevenbergMarquardtParams params;

View File

@ -104,7 +104,7 @@ int main(int argc, char** argv){
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(1,firstPose));
graph.emplace_shared<NonlinearEquality<Pose3> >(1,firstPose);
LevenbergMarquardtParams params;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;

View File

@ -126,7 +126,7 @@ int main(int argc, char** argv){
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
graph.emplace_shared<NonlinearEquality<Pose3> >(Symbol('x',1),first_pose);
LevenbergMarquardtParams params;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;

View File

@ -51,7 +51,7 @@ struct LPPolicy {
++it) {
size_t dim = lp.cost.getDim(it);
Vector b = xk.at(*it) - lp.cost.getA(it).transpose(); // b = xk-g
graph.push_back(JacobianFactor(*it, Matrix::Identity(dim, dim), b));
graph.emplace_shared<JacobianFactor>(*it, Matrix::Identity(dim, dim), b);
}
KeySet allKeys = lp.inequalities.keys();
@ -67,8 +67,7 @@ struct LPPolicy {
std::inserter(difference, difference.end()));
for (Key k : difference) {
size_t dim = lp.constrainedKeyDimMap().at(k);
graph.push_back(
JacobianFactor(k, Matrix::Identity(dim, dim), xk.at(k)));
graph.emplace_shared<JacobianFactor>(k, Matrix::Identity(dim, dim), xk.at(k));
}
}
return graph;
@ -77,4 +76,4 @@ struct LPPolicy {
using LPSolver = ActiveSetSolver<LP, LPPolicy, LPInitSolver>;
}
}

View File

@ -189,12 +189,12 @@ TEST(LPSolver, overConstrainedLinearSystem) {
TEST(LPSolver, overConstrainedLinearSystem2) {
GaussianFactorGraph graph;
graph.push_back(JacobianFactor(1, I_1x1, 2, I_1x1, kOne,
noiseModel::Constrained::All(1)));
graph.push_back(JacobianFactor(1, I_1x1, 2, -I_1x1, 5 * kOne,
noiseModel::Constrained::All(1)));
graph.push_back(JacobianFactor(1, I_1x1, 2, 2 * I_1x1, 6 * kOne,
noiseModel::Constrained::All(1)));
graph.emplace_shared<JacobianFactor>(1, I_1x1, 2, I_1x1, kOne,
noiseModel::Constrained::All(1));
graph.emplace_shared<JacobianFactor>(1, I_1x1, 2, -I_1x1, 5 * kOne,
noiseModel::Constrained::All(1));
graph.emplace_shared<JacobianFactor>(1, I_1x1, 2, 2 * I_1x1, 6 * kOne,
noiseModel::Constrained::All(1));
VectorValues x = graph.optimize();
// This check confirms that gtsam linear constraint solver can't handle
// over-constrained system

View File

@ -403,9 +403,9 @@ TEST( ConcurrentBatchFilter, update_and_marginalize )
NonlinearFactorGraph partialGraph;
partialGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
partialGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
partialGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
partialGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
partialGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
partialGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
Values partialValues;
partialValues.insert(1, optimalValues.at<Pose3>(1));
@ -437,10 +437,10 @@ TEST( ConcurrentBatchFilter, update_and_marginalize )
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(NonlinearFactor::shared_ptr());
// ==========================================================
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
for(const GaussianFactor::shared_ptr& factor: result) {
expectedGraph.push_back(LinearContainerFactor(factor, partialValues));
expectedGraph.emplace_shared<LinearContainerFactor>(factor, partialValues);
}
@ -1126,13 +1126,13 @@ TEST( ConcurrentBatchFilter, removeFactors_topology_1 )
NonlinearFactorGraph actualGraph = filter.getFactors();
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
CHECK(assert_equal(expectedGraph, actualGraph, 1e-6));
}
@ -1181,11 +1181,11 @@ TEST( ConcurrentBatchFilter, removeFactors_topology_2 )
NonlinearFactorGraph actualGraph = filter.getFactors();
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
@ -1238,10 +1238,10 @@ TEST( ConcurrentBatchFilter, removeFactors_topology_3 )
NonlinearFactorGraph expectedGraph;
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
CHECK(assert_equal(expectedGraph, actualGraph, 1e-6));
}
@ -1258,11 +1258,11 @@ TEST( ConcurrentBatchFilter, removeFactors_values )
// Add some factors to the filter
NonlinearFactorGraph newFactors;
newFactors.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
newFactors.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
newFactors.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
newFactors.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
newFactors.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
newFactors.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
newFactors.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
newFactors.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
newFactors.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
newFactors.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
Values newValues;
newValues.insert(1, Pose3().compose(poseError));
@ -1291,11 +1291,11 @@ TEST( ConcurrentBatchFilter, removeFactors_values )
// note: factors are removed before the optimization
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());

View File

@ -617,13 +617,13 @@ TEST( ConcurrentBatchSmoother, removeFactors_topology_1 )
NonlinearFactorGraph actualGraph = smoother.getFactors();
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
CHECK(assert_equal(expectedGraph, actualGraph, 1e-6));
}
@ -670,11 +670,11 @@ TEST( ConcurrentBatchSmoother, removeFactors_topology_2 )
NonlinearFactorGraph actualGraph = smoother.getFactors();
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
@ -724,10 +724,10 @@ TEST( ConcurrentBatchSmoother, removeFactors_topology_3 )
NonlinearFactorGraph expectedGraph;
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
CHECK(assert_equal(expectedGraph, actualGraph, 1e-6));
}
@ -744,11 +744,11 @@ TEST( ConcurrentBatchSmoother, removeFactors_values )
// Add some factors to the Smoother
NonlinearFactorGraph newFactors;
newFactors.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
newFactors.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
newFactors.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
newFactors.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
newFactors.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
newFactors.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
newFactors.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
newFactors.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
newFactors.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
newFactors.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
Values newValues;
newValues.insert(1, Pose3().compose(poseError));
@ -774,11 +774,11 @@ TEST( ConcurrentBatchSmoother, removeFactors_values )
// note: factors are removed before the optimization
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());

View File

@ -423,9 +423,9 @@ TEST( ConcurrentIncrementalFilter, update_and_marginalize_1 )
// ----------------------------------------------------------------------------------------------
NonlinearFactorGraph partialGraph;
partialGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
partialGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
partialGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
partialGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
partialGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
partialGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
GaussianFactorGraph linearGraph = *partialGraph.linearize(newValues);
@ -441,7 +441,7 @@ TEST( ConcurrentIncrementalFilter, update_and_marginalize_1 )
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(NonlinearFactor::shared_ptr());
// ==========================================================
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
for(const GaussianFactor::shared_ptr& factor: marginal) {
// the linearization point for the linear container is optional, but it is not used in the filter,
@ -507,9 +507,9 @@ TEST( ConcurrentIncrementalFilter, update_and_marginalize_2 )
// ----------------------------------------------------------------------------------------------
NonlinearFactorGraph partialGraph;
partialGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
partialGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
partialGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
partialGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
partialGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
partialGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
GaussianFactorGraph linearGraph = *partialGraph.linearize(optimalValues);
@ -525,7 +525,7 @@ TEST( ConcurrentIncrementalFilter, update_and_marginalize_2 )
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(NonlinearFactor::shared_ptr());
// ==========================================================
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
for(const GaussianFactor::shared_ptr& factor: marginal) {
// the linearization point for the linear container is optional, but it is not used in the filter,
@ -1231,13 +1231,13 @@ TEST( ConcurrentIncrementalFilter, removeFactors_topology_1 )
NonlinearFactorGraph actualGraph = filter.getFactors();
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery))
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
CHECK(assert_equal(expectedGraph, actualGraph, 1e-6));
}
@ -1289,11 +1289,11 @@ TEST( ConcurrentIncrementalFilter, removeFactors_topology_2 )
NonlinearFactorGraph actualGraph = filter.getFactors();
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
@ -1350,10 +1350,10 @@ TEST( ConcurrentIncrementalFilter, removeFactors_topology_3 )
NonlinearFactorGraph expectedGraph;
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
CHECK(assert_equal(expectedGraph, actualGraph, 1e-6));
}
@ -1406,11 +1406,11 @@ TEST( ConcurrentIncrementalFilter, removeFactors_values )
Values actualValues = filter.getLinearizationPoint();
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
// we removed this one: expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());

View File

@ -639,13 +639,13 @@ TEST( ConcurrentIncrementalSmoother, removeFactors_topology_1 )
actualGraph.print("actual graph: \n");
NonlinearFactorGraph expectedGraph;
expectedGraph.push_back(PriorFactor<Pose3>(1, poseInitial, noisePrior));
expectedGraph.emplace_shared<PriorFactor<Pose3> >(1, poseInitial, noisePrior);
// we removed this one: expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
// we should add an empty one, so that the ordering and labeling of the factors is preserved
expectedGraph.push_back(NonlinearFactor::shared_ptr());
expectedGraph.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
expectedGraph.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, poseOdometry, noiseOdometery);
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, poseOdometry, noiseOdometery);
// CHECK(assert_equal(expectedGraph, actualGraph, 1e-6));
}

View File

@ -27,22 +27,22 @@ NonlinearFactorGraph planarSLAMGraph() {
// Prior on pose x1 at the origin.
Pose2 prior(0.0, 0.0, 0.0);
auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.add(PriorFactor<Pose2>(x1, prior, priorNoise));
graph.emplace_shared<PriorFactor<Pose2> >(x1, prior, priorNoise);
// Two odometry factors
Pose2 odometry(2.0, 0.0, 0.0);
auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
graph.emplace_shared<BetweenFactor<Pose2> >(x1, x2, odometry, odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(x2, x3, odometry, odometryNoise);
// Add Range-Bearing measurements to two different landmarks
auto measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2));
Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90),
bearing32 = Rot2::fromDegrees(90);
double range11 = std::sqrt(4.0 + 4.0), range21 = 2.0, range32 = 2.0;
graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x1, l1, bearing11, range11, measurementNoise);
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x2, l1, bearing21, range21, measurementNoise);
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x3, l2, bearing32, range32, measurementNoise);
return graph;
}

View File

@ -116,8 +116,8 @@ TEST( SmartRangeFactor, optimization ) {
graph.push_back(f);
const noiseModel::Base::shared_ptr //
priorNoise = noiseModel::Diagonal::Sigmas(Vector3(1, 1, M_PI));
graph.push_back(PriorFactor<Pose2>(1, pose1, priorNoise));
graph.push_back(PriorFactor<Pose2>(2, pose2, priorNoise));
graph.emplace_shared<PriorFactor<Pose2> >(1, pose1, priorNoise);
graph.emplace_shared<PriorFactor<Pose2> >(2, pose2, priorNoise);
// Try optimizing
LevenbergMarquardtParams params;

View File

@ -254,8 +254,8 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, pose1, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, pose2, noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -394,8 +394,8 @@ TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, pose1, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, pose2, noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -463,8 +463,8 @@ TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, pose1, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, pose2, noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -545,8 +545,8 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
graph.emplace_shared<PriorFactor<Pose3> >(x1, pose1, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, pose2, noisePrior);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise

View File

@ -51,7 +51,7 @@ TEST(PinholeCamera, BAL) {
for (size_t j = 0; j < db.number_tracks(); j++) {
for (const SfM_Measurement& m: db.tracks[j].measurements)
graph.push_back(sfmFactor(m.second, unit2, m.first, P(j)));
graph.emplace_shared<sfmFactor>(m.second, unit2, m.first, P(j));
}
Values initial = initialCamerasAndPointsEstimate(db);

View File

@ -40,7 +40,7 @@ int main(int argc, char* argv[]) {
for (const SfM_Measurement& m: db.tracks[j].measurements) {
size_t i = m.first;
Point2 z = m.second;
graph.push_back(SfmFactor(z, gNoiseModel, C(i), P(j)));
graph.emplace_shared<SfmFactor>(z, gNoiseModel, C(i), P(j));
}
}