Merge branch 'develop' into city10000
commit
fab06a33a0
|
@ -166,7 +166,7 @@ int main(int argc, char* argv[]) {
|
|||
clock_t after_update = clock();
|
||||
smoother_update_times.push_back({index, after_update - before_update});
|
||||
|
||||
size_t key_s, key_t;
|
||||
size_t key_s, key_t{0};
|
||||
|
||||
clock_t start_time = clock();
|
||||
std::string str;
|
||||
|
|
|
@ -214,7 +214,10 @@ namespace gtsam {
|
|||
std::pair<DiscreteConditional::shared_ptr, DiscreteFactor::shared_ptr> //
|
||||
EliminateDiscrete(const DiscreteFactorGraph& factors,
|
||||
const Ordering& frontalKeys) {
|
||||
DiscreteFactor::shared_ptr product = factors.scaledProduct();
|
||||
gttic(product);
|
||||
// `product` is scaled later to prevent underflow.
|
||||
DiscreteFactor::shared_ptr product = factors.product();
|
||||
gttoc(product);
|
||||
|
||||
// sum out frontals, this is the factor on the separator
|
||||
gttic(sum);
|
||||
|
@ -223,6 +226,16 @@ namespace gtsam {
|
|||
sum = sum->scale();
|
||||
gttoc(sum);
|
||||
|
||||
// Normalize/scale to prevent underflow.
|
||||
// We divide both `product` and `sum` by `max(sum)`
|
||||
// since it is faster to compute and when the conditional
|
||||
// is formed by `product/sum`, the scaling term cancels out.
|
||||
gttic(scale);
|
||||
DiscreteFactor::shared_ptr denominator = sum->max(sum->size());
|
||||
product = product->operator/(denominator);
|
||||
sum = sum->operator/(denominator);
|
||||
gttoc(scale);
|
||||
|
||||
// Ordering keys for the conditional so that frontalKeys are really in front
|
||||
Ordering orderedKeys;
|
||||
orderedKeys.insert(orderedKeys.end(), frontalKeys.begin(),
|
||||
|
|
|
@ -16,19 +16,35 @@
|
|||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#include <gtsam/inference/JunctionTree-inst.h>
|
||||
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
||||
#include <gtsam/discrete/DiscreteEliminationTree.h>
|
||||
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
||||
#include <gtsam/inference/JunctionTree-inst.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
// Instantiate base classes
|
||||
template class EliminatableClusterTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
template class JunctionTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
// Instantiate base classes
|
||||
template class EliminatableClusterTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
template class JunctionTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
|
||||
/* ************************************************************************* */
|
||||
DiscreteJunctionTree::DiscreteJunctionTree(
|
||||
const DiscreteEliminationTree& eliminationTree) :
|
||||
Base(eliminationTree) {}
|
||||
/* ************************************************************************* */
|
||||
DiscreteJunctionTree::DiscreteJunctionTree(
|
||||
const DiscreteEliminationTree& eliminationTree)
|
||||
: Base(eliminationTree) {}
|
||||
/* ************************************************************************* */
|
||||
|
||||
void DiscreteJunctionTree::print(const std::string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
auto visitor = [&keyFormatter](
|
||||
const std::shared_ptr<DiscreteJunctionTree::Cluster>& node,
|
||||
const std::string& parentString) {
|
||||
// Print the current node
|
||||
node->print(parentString + "-", keyFormatter);
|
||||
node->factors.print(parentString + "-", keyFormatter);
|
||||
std::cout << std::endl;
|
||||
return parentString + "| "; // Increment the indentation
|
||||
};
|
||||
std::string parentString = s;
|
||||
treeTraversal::DepthFirstForest(*this, parentString, visitor);
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -18,54 +18,71 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteBayesTree.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/inference/JunctionTree.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
// Forward declarations
|
||||
class DiscreteEliminationTree;
|
||||
// Forward declarations
|
||||
class DiscreteEliminationTree;
|
||||
|
||||
/**
|
||||
* An EliminatableClusterTree, i.e., a set of variable clusters with factors,
|
||||
* arranged in a tree, with the additional property that it represents the
|
||||
* clique tree associated with a Bayes net.
|
||||
*
|
||||
* In GTSAM a junction tree is an intermediate data structure in multifrontal
|
||||
* variable elimination. Each node is a cluster of factors, along with a
|
||||
* clique of variables that are eliminated all at once. In detail, every node k
|
||||
* represents a clique (maximal fully connected subset) of an associated chordal
|
||||
* graph, such as a chordal Bayes net resulting from elimination.
|
||||
*
|
||||
* The difference with the BayesTree is that a JunctionTree stores factors,
|
||||
* whereas a BayesTree stores conditionals, that are the product of eliminating
|
||||
* the factors in the corresponding JunctionTree cliques.
|
||||
*
|
||||
* The tree structure and elimination method are exactly analogous to the
|
||||
* EliminationTree, except that in the JunctionTree, at each node multiple
|
||||
* variables are eliminated at a time.
|
||||
*
|
||||
* \ingroup Multifrontal
|
||||
* @ingroup discrete
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class GTSAM_EXPORT DiscreteJunctionTree
|
||||
: public JunctionTree<DiscreteBayesTree, DiscreteFactorGraph> {
|
||||
public:
|
||||
typedef JunctionTree<DiscreteBayesTree, DiscreteFactorGraph>
|
||||
Base; ///< Base class
|
||||
typedef DiscreteJunctionTree This; ///< This class
|
||||
typedef std::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
|
||||
|
||||
/// @name Constructors
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* An EliminatableClusterTree, i.e., a set of variable clusters with factors, arranged in a tree,
|
||||
* with the additional property that it represents the clique tree associated with a Bayes net.
|
||||
*
|
||||
* In GTSAM a junction tree is an intermediate data structure in multifrontal
|
||||
* variable elimination. Each node is a cluster of factors, along with a
|
||||
* clique of variables that are eliminated all at once. In detail, every node k represents
|
||||
* a clique (maximal fully connected subset) of an associated chordal graph, such as a
|
||||
* chordal Bayes net resulting from elimination.
|
||||
*
|
||||
* The difference with the BayesTree is that a JunctionTree stores factors, whereas a
|
||||
* BayesTree stores conditionals, that are the product of eliminating the factors in the
|
||||
* corresponding JunctionTree cliques.
|
||||
*
|
||||
* The tree structure and elimination method are exactly analogous to the EliminationTree,
|
||||
* except that in the JunctionTree, at each node multiple variables are eliminated at a time.
|
||||
*
|
||||
* \ingroup Multifrontal
|
||||
* @ingroup discrete
|
||||
* \nosubgrouping
|
||||
* Build the elimination tree of a factor graph using precomputed column
|
||||
* structure.
|
||||
* @param factorGraph The factor graph for which to build the elimination tree
|
||||
* @param structure The set of factors involving each variable. If this is
|
||||
* not precomputed, you can call the Create(const FactorGraph<DERIVEDFACTOR>&)
|
||||
* named constructor instead.
|
||||
* @return The elimination tree
|
||||
*/
|
||||
class GTSAM_EXPORT DiscreteJunctionTree :
|
||||
public JunctionTree<DiscreteBayesTree, DiscreteFactorGraph> {
|
||||
public:
|
||||
typedef JunctionTree<DiscreteBayesTree, DiscreteFactorGraph> Base; ///< Base class
|
||||
typedef DiscreteJunctionTree This; ///< This class
|
||||
typedef std::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
|
||||
DiscreteJunctionTree(const DiscreteEliminationTree& eliminationTree);
|
||||
|
||||
/**
|
||||
* Build the elimination tree of a factor graph using precomputed column structure.
|
||||
* @param factorGraph The factor graph for which to build the elimination tree
|
||||
* @param structure The set of factors involving each variable. If this is not
|
||||
* precomputed, you can call the Create(const FactorGraph<DERIVEDFACTOR>&)
|
||||
* named constructor instead.
|
||||
* @return The elimination tree
|
||||
*/
|
||||
DiscreteJunctionTree(const DiscreteEliminationTree& eliminationTree);
|
||||
};
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// typedef for wrapper:
|
||||
using DiscreteCluster = DiscreteJunctionTree::Cluster;
|
||||
}
|
||||
/** Print the tree to cout */
|
||||
void print(const std::string& name = "DiscreteJunctionTree: ",
|
||||
const KeyFormatter& formatter = DefaultKeyFormatter) const;
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
||||
/// typedef for wrapper:
|
||||
using DiscreteCluster = DiscreteJunctionTree::Cluster;
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -0,0 +1,288 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* DiscreteSearch.cpp
|
||||
*
|
||||
* @date January, 2025
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteEliminationTree.h>
|
||||
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
||||
#include <gtsam/discrete/DiscreteSearch.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using Slot = DiscreteSearch::Slot;
|
||||
using Solution = DiscreteSearch::Solution;
|
||||
|
||||
/*
|
||||
* A SearchNode represents a node in the search tree for the search algorithm.
|
||||
* Each SearchNode contains a partial assignment of discrete variables, the
|
||||
* current error, a bound on the final error, and the index of the next
|
||||
* slot to be assigned.
|
||||
*/
|
||||
struct SearchNode {
|
||||
DiscreteValues assignment; // Partial assignment of discrete variables.
|
||||
double error; // Current error for the partial assignment.
|
||||
double bound; // Lower bound on the final error
|
||||
std::optional<size_t> next; // Index of the next slot to be assigned.
|
||||
|
||||
// Construct the root node for the search.
|
||||
static SearchNode Root(size_t numSlots, double bound) {
|
||||
return {DiscreteValues(), 0.0, bound, 0};
|
||||
}
|
||||
|
||||
struct Compare {
|
||||
bool operator()(const SearchNode& a, const SearchNode& b) const {
|
||||
return a.bound > b.bound; // smallest bound -> highest priority
|
||||
}
|
||||
};
|
||||
|
||||
// Checks if the node represents a complete assignment.
|
||||
inline bool isComplete() const { return !next; }
|
||||
|
||||
// Expands the node by assigning the next variable(s).
|
||||
SearchNode expand(const DiscreteValues& fa, const Slot& slot,
|
||||
std::optional<size_t> nextSlot) const {
|
||||
// Combine the new frontal assignment with the current partial assignment
|
||||
DiscreteValues newAssignment = assignment;
|
||||
for (auto& [key, value] : fa) {
|
||||
newAssignment[key] = value;
|
||||
}
|
||||
double errorSoFar = error + slot.factor->error(newAssignment);
|
||||
return {newAssignment, errorSoFar, errorSoFar + slot.heuristic, nextSlot};
|
||||
}
|
||||
|
||||
// Prints the SearchNode to an output stream.
|
||||
friend std::ostream& operator<<(std::ostream& os, const SearchNode& node) {
|
||||
os << "SearchNode(error=" << node.error << ", bound=" << node.bound << ")";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
struct CompareSolution {
|
||||
bool operator()(const Solution& a, const Solution& b) const {
|
||||
return a.error < b.error;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* A Solutions object maintains a priority queue of the best solutions found
|
||||
* during the search. The priority queue is limited to a maximum size, and
|
||||
* solutions are only added if they are better than the worst solution.
|
||||
*/
|
||||
class Solutions {
|
||||
size_t maxSize_; // Maximum number of solutions to keep
|
||||
std::priority_queue<Solution, std::vector<Solution>, CompareSolution> pq_;
|
||||
|
||||
public:
|
||||
Solutions(size_t maxSize) : maxSize_(maxSize) {}
|
||||
|
||||
// Add a solution to the priority queue, possibly evicting the worst one.
|
||||
// Return true if we added the solution.
|
||||
bool maybeAdd(double error, const DiscreteValues& assignment) {
|
||||
const bool full = pq_.size() == maxSize_;
|
||||
if (full && error >= pq_.top().error) return false;
|
||||
if (full) pq_.pop();
|
||||
pq_.emplace(error, assignment);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Check if we have any solutions
|
||||
bool empty() const { return pq_.empty(); }
|
||||
|
||||
// Method to print all solutions
|
||||
friend std::ostream& operator<<(std::ostream& os, const Solutions& sn) {
|
||||
os << "Solutions (top " << sn.pq_.size() << "):\n";
|
||||
auto pq = sn.pq_;
|
||||
while (!pq.empty()) {
|
||||
os << pq.top() << "\n";
|
||||
pq.pop();
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
// Check if (partial) solution with given bound can be pruned. If we have
|
||||
// room, we never prune. Otherwise, prune if lower bound on error is worse
|
||||
// than our current worst error.
|
||||
bool prune(double bound) const {
|
||||
if (pq_.size() < maxSize_) return false;
|
||||
return bound >= pq_.top().error;
|
||||
}
|
||||
|
||||
// Method to extract solutions in ascending order of error
|
||||
std::vector<Solution> extractSolutions() {
|
||||
std::vector<Solution> result;
|
||||
while (!pq_.empty()) {
|
||||
result.push_back(pq_.top());
|
||||
pq_.pop();
|
||||
}
|
||||
std::sort(
|
||||
result.begin(), result.end(),
|
||||
[](const Solution& a, const Solution& b) { return a.error < b.error; });
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
// Get the factor associated with a node, possibly product of factors.
|
||||
template <typename NodeType>
|
||||
static DiscreteFactor::shared_ptr getFactor(const NodeType& node) {
|
||||
const auto& factors = node->factors;
|
||||
return factors.size() == 1 ? factors.back()
|
||||
: DiscreteFactorGraph(factors).product();
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteEliminationTree& etree) {
|
||||
using NodePtr = std::shared_ptr<DiscreteEliminationTree::Node>;
|
||||
auto visitor = [this](const NodePtr& node, int data) {
|
||||
const DiscreteFactor::shared_ptr factor = getFactor(node);
|
||||
const size_t cardinality = factor->cardinality(node->key);
|
||||
std::vector<std::pair<Key, size_t>> pairs{{node->key, cardinality}};
|
||||
const Slot slot{factor, DiscreteValues::CartesianProduct(pairs), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
return data + 1;
|
||||
};
|
||||
|
||||
int data = 0; // unused
|
||||
treeTraversal::DepthFirstForest(etree, data, visitor);
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteJunctionTree& junctionTree) {
|
||||
using NodePtr = std::shared_ptr<DiscreteJunctionTree::Cluster>;
|
||||
auto visitor = [this](const NodePtr& cluster, int data) {
|
||||
const auto factor = getFactor(cluster);
|
||||
std::vector<std::pair<Key, size_t>> pairs;
|
||||
for (Key key : cluster->orderedFrontalKeys) {
|
||||
pairs.emplace_back(key, factor->cardinality(key));
|
||||
}
|
||||
const Slot slot{factor, DiscreteValues::CartesianProduct(pairs), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
return data + 1;
|
||||
};
|
||||
|
||||
int data = 0; // unused
|
||||
treeTraversal::DepthFirstForest(junctionTree, data, visitor);
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
DiscreteSearch DiscreteSearch::FromFactorGraph(
|
||||
const DiscreteFactorGraph& factorGraph, const Ordering& ordering,
|
||||
bool buildJunctionTree) {
|
||||
const DiscreteEliminationTree etree(factorGraph, ordering);
|
||||
if (buildJunctionTree) {
|
||||
const DiscreteJunctionTree junctionTree(etree);
|
||||
return DiscreteSearch(junctionTree);
|
||||
} else {
|
||||
return DiscreteSearch(etree);
|
||||
}
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteBayesNet& bayesNet) {
|
||||
slots_.reserve(bayesNet.size());
|
||||
for (auto& conditional : bayesNet) {
|
||||
const Slot slot{conditional, conditional->frontalAssignments(), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
}
|
||||
std::reverse(slots_.begin(), slots_.end());
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteBayesTree& bayesTree) {
|
||||
using NodePtr = DiscreteBayesTree::sharedClique;
|
||||
auto visitor = [this](const NodePtr& clique, int data) {
|
||||
auto conditional = clique->conditional();
|
||||
const Slot slot{conditional, conditional->frontalAssignments(), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
return data + 1;
|
||||
};
|
||||
|
||||
int data = 0; // unused
|
||||
treeTraversal::DepthFirstForest(bayesTree, data, visitor);
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
void DiscreteSearch::print(const std::string& name,
|
||||
const KeyFormatter& formatter) const {
|
||||
std::cout << name << " with " << slots_.size() << " slots:\n";
|
||||
for (size_t i = 0; i < slots_.size(); ++i) {
|
||||
std::cout << i << ": " << slots_[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
using SearchNodeQueue = std::priority_queue<SearchNode, std::vector<SearchNode>,
|
||||
SearchNode::Compare>;
|
||||
|
||||
std::vector<Solution> DiscreteSearch::run(size_t K) const {
|
||||
if (slots_.empty()) {
|
||||
return {Solution(0.0, DiscreteValues())};
|
||||
}
|
||||
|
||||
Solutions solutions(K);
|
||||
SearchNodeQueue expansions;
|
||||
expansions.push(SearchNode::Root(slots_.size(), lowerBound_));
|
||||
|
||||
// Perform the search
|
||||
while (!expansions.empty()) {
|
||||
// Pop the partial assignment with the smallest bound
|
||||
SearchNode current = expansions.top();
|
||||
expansions.pop();
|
||||
|
||||
// If we already have K solutions, prune if we cannot beat the worst one.
|
||||
if (solutions.prune(current.bound)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check if we have a complete assignment
|
||||
if (current.isComplete()) {
|
||||
solutions.maybeAdd(current.error, current.assignment);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Get the next slot to expand
|
||||
const auto& slot = slots_[*current.next];
|
||||
std::optional<size_t> nextSlot = *current.next + 1;
|
||||
if (nextSlot == slots_.size()) nextSlot.reset();
|
||||
for (auto& fa : slot.assignments) {
|
||||
auto childNode = current.expand(fa, slot, nextSlot);
|
||||
|
||||
// Again, prune if we cannot beat the worst solution
|
||||
if (!solutions.prune(childNode.bound)) {
|
||||
expansions.emplace(childNode);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Extract solutions from bestSolutions in ascending order of error
|
||||
return solutions.extractSolutions();
|
||||
}
|
||||
/*
|
||||
* We have a number of factors, each with a max value, and we want to compute
|
||||
* a lower-bound on the cost-to-go for each slot, *not* including this factor.
|
||||
* For the last slot[n-1], this is 0.0, as the cost after that is zero.
|
||||
* For the second-to-last slot, it is h = -log(max(factor[n-1])), because after
|
||||
* we assign slot[n-2] we still need to assign slot[n-1], which will cost *at
|
||||
* least* h. We return the estimated lower bound of the cost for *all* slots.
|
||||
*/
|
||||
double DiscreteSearch::computeHeuristic() {
|
||||
double error = 0.0;
|
||||
for (auto it = slots_.rbegin(); it != slots_.rend(); ++it) {
|
||||
it->heuristic = error;
|
||||
Ordering ordering(it->factor->begin(), it->factor->end());
|
||||
auto maxx = it->factor->max(ordering);
|
||||
error -= std::log(maxx->evaluate({}));
|
||||
}
|
||||
return error;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,166 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file DiscreteSearch.h
|
||||
* @brief Defines the DiscreteSearch class for discrete search algorithms.
|
||||
*
|
||||
* @details This file contains the definition of the DiscreteSearch class, which
|
||||
* is used in discrete search algorithms to find the K best solutions.
|
||||
*
|
||||
* @date January, 2025
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteBayesTree.h>
|
||||
|
||||
#include <queue>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief DiscreteSearch: Search for the K best solutions.
|
||||
*
|
||||
* This class is used to search for the K best solutions in a DiscreteBayesNet.
|
||||
* This is implemented with a modified A* search algorithm that uses a priority
|
||||
* queue to manage the search nodes. That machinery is defined in the .cpp file.
|
||||
* The heuristic we use is the sum of the log-probabilities of the
|
||||
* maximum-probability assignments for each slot, for all slots to the right of
|
||||
* the current slot.
|
||||
*
|
||||
* TODO: The heuristic could be refined by using the partial assignment in
|
||||
* search node to refine the max-probability assignment for the remaining slots.
|
||||
* This would incur more computation but will lead to fewer expansions.
|
||||
*/
|
||||
class GTSAM_EXPORT DiscreteSearch {
|
||||
public:
|
||||
/**
|
||||
* We structure the search as a set of slots, each with a factor and
|
||||
* a set of variable assignments that need to be chosen. In addition, each
|
||||
* slot has a heuristic associated with it.
|
||||
*
|
||||
* Example:
|
||||
* The factors in the search problem (always parents before descendents!):
|
||||
* [P(A), P(B|A), P(C|A,B)]
|
||||
* The assignments for each factor.
|
||||
* [[A0,A1], [B0,B1], [C0,C1,C2]]
|
||||
* A lower bound on the cost-to-go after each slot, e.g.,
|
||||
* [-log(max_B P(B|A)) -log(max_C P(C|A,B)), -log(max_C P(C|A,B)), 0.0]
|
||||
* Note that these decrease as we move from right to left.
|
||||
* We keep the global lower bound as lowerBound_. In the example, it is:
|
||||
* -log(max_B P(B|A)) -log(max_C P(C|A,B)) -log(max_C P(C|A,B))
|
||||
*/
|
||||
struct Slot {
|
||||
DiscreteFactor::shared_ptr factor;
|
||||
std::vector<DiscreteValues> assignments;
|
||||
double heuristic;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const Slot& slot) {
|
||||
os << "Slot with " << slot.assignments.size()
|
||||
<< " assignments, heuristic=" << slot.heuristic;
|
||||
os << ", factor:\n" << slot.factor->markdown() << std::endl;
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* A solution is a set of assignments, covering all the slots.
|
||||
* as well as an associated error = -log(probability)
|
||||
*/
|
||||
struct Solution {
|
||||
double error;
|
||||
DiscreteValues assignment;
|
||||
Solution(double err, const DiscreteValues& assign)
|
||||
: error(err), assignment(assign) {}
|
||||
friend std::ostream& operator<<(std::ostream& os, const Solution& sn) {
|
||||
os << "[ error=" << sn.error << " assignment={" << sn.assignment << "}]";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* Construct from a DiscreteFactorGraph.
|
||||
*
|
||||
* Internally creates either an elimination tree or a junction tree. The
|
||||
* latter incurs more up-front computation but the search itself might be
|
||||
* faster. Then again, for the elimination tree, the heuristic will be more
|
||||
* fine-grained (more slots).
|
||||
*
|
||||
* @param factorGraph The factor graph to search over.
|
||||
* @param ordering The ordering used to create etree (and maybe jtree).
|
||||
* @param buildJunctionTree Whether to build a junction tree or not.
|
||||
*/
|
||||
static DiscreteSearch FromFactorGraph(const DiscreteFactorGraph& factorGraph,
|
||||
const Ordering& ordering,
|
||||
bool buildJunctionTree = false);
|
||||
|
||||
/// Construct from a DiscreteEliminationTree.
|
||||
DiscreteSearch(const DiscreteEliminationTree& etree);
|
||||
|
||||
/// Construct from a DiscreteJunctionTree.
|
||||
DiscreteSearch(const DiscreteJunctionTree& junctionTree);
|
||||
|
||||
//// Construct from a DiscreteBayesNet.
|
||||
DiscreteSearch(const DiscreteBayesNet& bayesNet);
|
||||
|
||||
/// Construct from a DiscreteBayesTree.
|
||||
DiscreteSearch(const DiscreteBayesTree& bayesTree);
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/** Print the tree to cout */
|
||||
void print(const std::string& name = "DiscreteSearch: ",
|
||||
const KeyFormatter& formatter = DefaultKeyFormatter) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard API
|
||||
/// @{
|
||||
|
||||
/// Return lower bound on the cost-to-go for the entire search
|
||||
double lowerBound() const { return lowerBound_; }
|
||||
|
||||
/// Read access to the slots
|
||||
const std::vector<Slot>& slots() const { return slots_; }
|
||||
|
||||
/**
|
||||
* @brief Search for the K best solutions.
|
||||
*
|
||||
* This method performs a search to find the K best solutions for the given
|
||||
* DiscreteBayesNet. It uses a priority queue to manage the search nodes,
|
||||
* expanding nodes with the smallest bound first. The search continues until
|
||||
* all possible nodes have been expanded or pruned.
|
||||
*
|
||||
* @return A vector of the K best solutions found during the search.
|
||||
*/
|
||||
std::vector<Solution> run(size_t K = 1) const;
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/**
|
||||
* Compute the cumulative lower-bound cost-to-go after each slot is filled.
|
||||
* @return the estimated lower bound of the cost for *all* slots.
|
||||
*/
|
||||
double computeHeuristic();
|
||||
|
||||
double lowerBound_; ///< Lower bound on the cost-to-go for the entire search.
|
||||
std::vector<Slot> slots_; ///< The slots to fill in the search.
|
||||
};
|
||||
|
||||
using DiscreteSearchSolution = DiscreteSearch::Solution; // for wrapping
|
||||
} // namespace gtsam
|
|
@ -26,12 +26,24 @@ using std::stringstream;
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************ */
|
||||
static void stream(std::ostream& os, const DiscreteValues& x,
|
||||
const KeyFormatter& keyFormatter) {
|
||||
for (const auto& kv : x)
|
||||
os << "(" << keyFormatter(kv.first) << ", " << kv.second << ")";
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
std::ostream& operator<<(std::ostream& os, const DiscreteValues& x) {
|
||||
stream(os, x, DefaultKeyFormatter);
|
||||
return os;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
void DiscreteValues::print(const string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
cout << s << ": ";
|
||||
for (auto&& kv : *this)
|
||||
cout << "(" << keyFormatter(kv.first) << ", " << kv.second << ")";
|
||||
stream(cout, *this, keyFormatter);
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
|
|
|
@ -64,6 +64,9 @@ class GTSAM_EXPORT DiscreteValues : public Assignment<Key> {
|
|||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// ostream operator:
|
||||
friend std::ostream& operator<<(std::ostream& os, const DiscreteValues& x);
|
||||
|
||||
// insert in base class;
|
||||
std::pair<iterator, bool> insert( const value_type& value ){
|
||||
return Base::insert(value);
|
||||
|
|
|
@ -464,4 +464,29 @@ class DiscreteJunctionTree {
|
|||
const gtsam::DiscreteCluster& operator[](size_t i) const;
|
||||
};
|
||||
|
||||
#include <gtsam/discrete/DiscreteSearch.h>
|
||||
class DiscreteSearchSolution {
|
||||
double error;
|
||||
gtsam::DiscreteValues assignment;
|
||||
DiscreteSearchSolution(double error, const gtsam::DiscreteValues& assignment);
|
||||
};
|
||||
|
||||
class DiscreteSearch {
|
||||
static DiscreteSearch FromFactorGraph(const gtsam::DiscreteFactorGraph& factorGraph,
|
||||
const gtsam::Ordering& ordering,
|
||||
bool buildJunctionTree = false);
|
||||
|
||||
DiscreteSearch(const gtsam::DiscreteEliminationTree& etree);
|
||||
DiscreteSearch(const gtsam::DiscreteJunctionTree& junctionTree);
|
||||
DiscreteSearch(const gtsam::DiscreteBayesNet& bayesNet);
|
||||
DiscreteSearch(const gtsam::DiscreteBayesTree& bayesTree);
|
||||
|
||||
void print(string name = "DiscreteSearch: ",
|
||||
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
|
||||
|
||||
double lowerBound() const;
|
||||
|
||||
std::vector<gtsam::DiscreteSearchSolution> run(size_t K = 1) const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* AsiaExample.h
|
||||
*
|
||||
* @date Jan, 2025
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
namespace gtsam {
|
||||
namespace asia_example {
|
||||
|
||||
static const Key D = Symbol('D', 1), X = Symbol('X', 2), E = Symbol('E', 3),
|
||||
B = Symbol('B', 4), L = Symbol('L', 5), T = Symbol('T', 6),
|
||||
S = Symbol('S', 7), A = Symbol('A', 8);
|
||||
|
||||
static const DiscreteKey Dyspnea(D, 2), XRay(X, 2), Either(E, 2),
|
||||
Bronchitis(B, 2), LungCancer(L, 2), Tuberculosis(T, 2), Smoking(S, 2),
|
||||
Asia(A, 2);
|
||||
|
||||
// Function to construct the Asia priors
|
||||
DiscreteBayesNet createPriors() {
|
||||
DiscreteBayesNet priors;
|
||||
priors.add(Smoking % "50/50");
|
||||
priors.add(Asia, "99/1");
|
||||
return priors;
|
||||
}
|
||||
|
||||
// Function to construct the incomplete Asia example
|
||||
DiscreteBayesNet createFragment() {
|
||||
DiscreteBayesNet fragment;
|
||||
fragment.add((Either | Tuberculosis, LungCancer) = "F T T T");
|
||||
fragment.add(LungCancer | Smoking = "99/1 90/10");
|
||||
fragment.add(Tuberculosis | Asia = "99/1 95/5");
|
||||
for (const auto& factor : createPriors()) fragment.push_back(factor);
|
||||
return fragment;
|
||||
}
|
||||
|
||||
// Function to construct the Asia example
|
||||
DiscreteBayesNet createAsiaExample() {
|
||||
DiscreteBayesNet asia;
|
||||
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
|
||||
asia.add(XRay | Either = "95/5 2/98");
|
||||
asia.add(Bronchitis | Smoking = "70/30 40/60");
|
||||
for (const auto& factor : createFragment()) asia.push_back(factor);
|
||||
return asia;
|
||||
}
|
||||
} // namespace asia_example
|
||||
} // namespace gtsam
|
|
@ -23,40 +23,19 @@
|
|||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
#include "AsiaExample.h"
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
static const DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2),
|
||||
LungCancer(6, 2), Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2);
|
||||
|
||||
using ADT = AlgebraicDecisionTree<Key>;
|
||||
|
||||
// Function to construct the Asia example
|
||||
DiscreteBayesNet constructAsiaExample() {
|
||||
DiscreteBayesNet asia;
|
||||
|
||||
asia.add(Asia, "99/1");
|
||||
asia.add(Smoking % "50/50"); // Signature version
|
||||
|
||||
asia.add(Tuberculosis | Asia = "99/1 95/5");
|
||||
asia.add(LungCancer | Smoking = "99/1 90/10");
|
||||
asia.add(Bronchitis | Smoking = "70/30 40/60");
|
||||
|
||||
asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
|
||||
|
||||
asia.add(XRay | Either = "95/5 2/98");
|
||||
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
|
||||
|
||||
return asia;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesNet, bayesNet) {
|
||||
using ADT = AlgebraicDecisionTree<Key>;
|
||||
DiscreteBayesNet bayesNet;
|
||||
DiscreteKey Parent(0, 2), Child(1, 2);
|
||||
|
||||
|
@ -86,11 +65,12 @@ TEST(DiscreteBayesNet, bayesNet) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesNet, Asia) {
|
||||
DiscreteBayesNet asia = constructAsiaExample();
|
||||
using namespace asia_example;
|
||||
const DiscreteBayesNet asia = createAsiaExample();
|
||||
|
||||
// Convert to factor graph
|
||||
DiscreteFactorGraph fg(asia);
|
||||
LONGS_EQUAL(3, fg.back()->size());
|
||||
LONGS_EQUAL(1, fg.back()->size());
|
||||
|
||||
// Check the marginals we know (of the parent-less nodes)
|
||||
DiscreteMarginals marginals(fg);
|
||||
|
@ -99,7 +79,7 @@ TEST(DiscreteBayesNet, Asia) {
|
|||
EXPECT(assert_equal(vs, marginals.marginalProbabilities(Smoking)));
|
||||
|
||||
// Create solver and eliminate
|
||||
const Ordering ordering{0, 1, 2, 3, 4, 5, 6, 7};
|
||||
const Ordering ordering{A, D, T, X, S, E, L, B};
|
||||
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
|
||||
DiscreteConditional expected2(Bronchitis % "11/9");
|
||||
EXPECT(assert_equal(expected2, *chordal->back()));
|
||||
|
@ -144,55 +124,50 @@ TEST(DiscreteBayesNet, Sugar) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesNet, Dot) {
|
||||
DiscreteBayesNet fragment;
|
||||
fragment.add(Asia % "99/1");
|
||||
fragment.add(Smoking % "50/50");
|
||||
using namespace asia_example;
|
||||
const DiscreteBayesNet fragment = createFragment();
|
||||
|
||||
fragment.add(Tuberculosis | Asia = "99/1 95/5");
|
||||
fragment.add(LungCancer | Smoking = "99/1 90/10");
|
||||
fragment.add((Either | Tuberculosis, LungCancer) = "F T T T");
|
||||
|
||||
string actual = fragment.dot();
|
||||
EXPECT(actual ==
|
||||
"digraph {\n"
|
||||
" size=\"5,5\";\n"
|
||||
"\n"
|
||||
" var0[label=\"0\"];\n"
|
||||
" var3[label=\"3\"];\n"
|
||||
" var4[label=\"4\"];\n"
|
||||
" var5[label=\"5\"];\n"
|
||||
" var6[label=\"6\"];\n"
|
||||
"\n"
|
||||
" var3->var5\n"
|
||||
" var6->var5\n"
|
||||
" var4->var6\n"
|
||||
" var0->var3\n"
|
||||
"}");
|
||||
std::string expected =
|
||||
"digraph {\n"
|
||||
" size=\"5,5\";\n"
|
||||
"\n"
|
||||
" var4683743612465315848[label=\"A8\"];\n"
|
||||
" var4971973988617027587[label=\"E3\"];\n"
|
||||
" var5476377146882523141[label=\"L5\"];\n"
|
||||
" var5980780305148018695[label=\"S7\"];\n"
|
||||
" var6052837899185946630[label=\"T6\"];\n"
|
||||
"\n"
|
||||
" var4683743612465315848->var6052837899185946630\n"
|
||||
" var5980780305148018695->var5476377146882523141\n"
|
||||
" var6052837899185946630->var4971973988617027587\n"
|
||||
" var5476377146882523141->var4971973988617027587\n"
|
||||
"}";
|
||||
std::string actual = fragment.dot();
|
||||
EXPECT(actual.compare(expected) == 0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Check markdown representation looks as expected.
|
||||
TEST(DiscreteBayesNet, markdown) {
|
||||
DiscreteBayesNet fragment;
|
||||
fragment.add(Asia % "99/1");
|
||||
fragment.add(Smoking | Asia = "8/2 7/3");
|
||||
using namespace asia_example;
|
||||
DiscreteBayesNet priors = createPriors();
|
||||
|
||||
string expected =
|
||||
std::string expected =
|
||||
"`DiscreteBayesNet` of size 2\n"
|
||||
"\n"
|
||||
" *P(Smoking):*\n\n"
|
||||
"|Smoking|value|\n"
|
||||
"|:-:|:-:|\n"
|
||||
"|0|0.5|\n"
|
||||
"|1|0.5|\n"
|
||||
"\n"
|
||||
" *P(Asia):*\n\n"
|
||||
"|Asia|value|\n"
|
||||
"|:-:|:-:|\n"
|
||||
"|0|0.99|\n"
|
||||
"|1|0.01|\n"
|
||||
"\n"
|
||||
" *P(Smoking|Asia):*\n\n"
|
||||
"|*Asia*|0|1|\n"
|
||||
"|:-:|:-:|:-:|\n"
|
||||
"|0|0.8|0.2|\n"
|
||||
"|1|0.7|0.3|\n\n";
|
||||
auto formatter = [](Key key) { return key == 0 ? "Asia" : "Smoking"; };
|
||||
string actual = fragment.markdown(formatter);
|
||||
"|1|0.01|\n\n";
|
||||
auto formatter = [](Key key) { return key == A ? "Asia" : "Smoking"; };
|
||||
std::string actual = priors.markdown(formatter);
|
||||
EXPECT(actual == expected);
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,113 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* testDiscreteSearch.cpp
|
||||
*
|
||||
* @date January, 2025
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/discrete/DiscreteSearch.h>
|
||||
|
||||
#include "AsiaExample.h"
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
// Create Asia Bayes net, FG, and Bayes tree once
|
||||
namespace asia {
|
||||
using namespace asia_example;
|
||||
static const DiscreteBayesNet bayesNet = createAsiaExample();
|
||||
|
||||
// Create factor graph and optimize with max-product for MPE
|
||||
static const DiscreteFactorGraph factorGraph(bayesNet);
|
||||
static const DiscreteValues mpe = factorGraph.optimize();
|
||||
|
||||
// Create ordering
|
||||
static const Ordering ordering{D, X, B, E, L, T, S, A};
|
||||
|
||||
// Create Bayes tree
|
||||
static const DiscreteBayesTree bayesTree =
|
||||
*factorGraph.eliminateMultifrontal(ordering);
|
||||
} // namespace asia
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesNet, EmptyKBest) {
|
||||
DiscreteBayesNet net; // no factors
|
||||
DiscreteSearch search(net);
|
||||
auto solutions = search.run(3);
|
||||
// Expect one solution with empty assignment, error=0
|
||||
EXPECT_LONGS_EQUAL(1, solutions.size());
|
||||
EXPECT_DOUBLES_EQUAL(0, std::fabs(solutions[0].error), 1e-9);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesTree, EmptyTree) {
|
||||
DiscreteBayesTree bt;
|
||||
|
||||
DiscreteSearch search(bt);
|
||||
auto solutions = search.run(3);
|
||||
|
||||
// We expect exactly 1 solution with error = 0.0 (the empty assignment).
|
||||
EXPECT_LONGS_EQUAL(1, solutions.size());
|
||||
EXPECT_DOUBLES_EQUAL(0, std::fabs(solutions[0].error), 1e-9);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesNet, AsiaKBest) {
|
||||
auto fromETree =
|
||||
DiscreteSearch::FromFactorGraph(asia::factorGraph, asia::ordering);
|
||||
auto fromJunctionTree =
|
||||
DiscreteSearch::FromFactorGraph(asia::factorGraph, asia::ordering, true);
|
||||
const DiscreteSearch fromBayesNet(asia::bayesNet);
|
||||
const DiscreteSearch fromBayesTree(asia::bayesTree);
|
||||
|
||||
for (auto& search :
|
||||
{fromETree, fromJunctionTree, fromBayesNet, fromBayesTree}) {
|
||||
// Ask for the MPE
|
||||
auto mpe = search.run();
|
||||
|
||||
// Regression on error lower bound
|
||||
EXPECT_DOUBLES_EQUAL(1.205536, search.lowerBound(), 1e-5);
|
||||
|
||||
// Check that the cost-to-go heuristic decreases from there
|
||||
auto slots = search.slots();
|
||||
double previousHeuristic = search.lowerBound();
|
||||
for (auto&& slot : slots) {
|
||||
EXPECT(slot.heuristic <= previousHeuristic);
|
||||
previousHeuristic = slot.heuristic;
|
||||
}
|
||||
|
||||
EXPECT_LONGS_EQUAL(1, mpe.size());
|
||||
// Regression test: check the MPE solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(mpe[0].error), 1e-5);
|
||||
|
||||
// Check it is equal to MPE via inference
|
||||
EXPECT(assert_equal(asia::mpe, mpe[0].assignment));
|
||||
|
||||
// Ask for top 4 solutions
|
||||
auto solutions = search.run(4);
|
||||
|
||||
EXPECT_LONGS_EQUAL(4, solutions.size());
|
||||
// Regression test: check the first and last solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(2.201708, std::fabs(solutions[3].error), 1e-5);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -202,6 +202,11 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
void HybridBayesTree::prune(const size_t maxNrLeaves) {
|
||||
if (!this->roots_.at(0)->conditional()->asDiscrete()) {
|
||||
// Root of the BayesTree is not a discrete clique, so we do nothing.
|
||||
return;
|
||||
}
|
||||
|
||||
auto prunedDiscreteProbs =
|
||||
this->roots_.at(0)->conditional()->asDiscrete<TableDistribution>();
|
||||
|
||||
|
|
|
@ -99,7 +99,8 @@ AlgebraicDecisionTree<Key> HybridNonlinearFactor::errorTree(
|
|||
auto errorFunc =
|
||||
[continuousValues](const std::pair<sharedFactor, double>& f) {
|
||||
auto [factor, val] = f;
|
||||
return factor->error(continuousValues) + val;
|
||||
return factor ? factor->error(continuousValues) + val
|
||||
: std::numeric_limits<double>::infinity();
|
||||
};
|
||||
return {factors_, errorFunc};
|
||||
}
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
import numpy as np
|
||||
from gtsam import Symbol
|
||||
|
||||
|
||||
def make_key(character, index, cardinality):
|
||||
"""
|
||||
Helper function to mimic the behavior of gtbook.Variables discrete_series function.
|
||||
"""
|
||||
symbol = Symbol(character, index)
|
||||
key = symbol.key()
|
||||
return (key, cardinality)
|
||||
|
||||
|
||||
def generate_transition_cpt(num_states, transitions=None):
|
||||
"""
|
||||
Generate a row-wise CPT for a transition matrix.
|
||||
"""
|
||||
if transitions is None:
|
||||
# Default to identity matrix with slight regularization
|
||||
transitions = np.eye(num_states) + 0.1 / num_states
|
||||
|
||||
# Ensure transitions sum to 1 if not already normalized
|
||||
transitions /= np.sum(transitions, axis=1, keepdims=True)
|
||||
return " ".join(["/".join(map(str, row)) for row in transitions])
|
||||
|
||||
|
||||
def generate_observation_cpt(num_states, num_obs, desired_state):
|
||||
"""
|
||||
Generate a row-wise CPT for observations with contrived probabilities.
|
||||
"""
|
||||
obs = np.zeros((num_states, num_obs + 1))
|
||||
obs[:, -1] = 1 # All states default to measurement num_obs
|
||||
obs[desired_state, 0:-1] = 1
|
||||
obs[desired_state, -1] = 0
|
||||
return " ".join(["/".join(map(str, row)) for row in obs])
|
|
@ -15,10 +15,16 @@ import unittest
|
|||
|
||||
import numpy as np
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
from dfg_utils import make_key, generate_transition_cpt, generate_observation_cpt
|
||||
|
||||
from gtsam import (DecisionTreeFactor, DiscreteConditional,
|
||||
DiscreteFactorGraph, DiscreteKeys, DiscreteValues, Ordering,
|
||||
Symbol)
|
||||
from gtsam import (
|
||||
DecisionTreeFactor,
|
||||
DiscreteConditional,
|
||||
DiscreteFactorGraph,
|
||||
DiscreteKeys,
|
||||
DiscreteValues,
|
||||
Ordering,
|
||||
)
|
||||
|
||||
OrderingType = Ordering.OrderingType
|
||||
|
||||
|
@ -50,7 +56,7 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
assignment[1] = 1
|
||||
|
||||
# Check if graph evaluation works ( 0.3*0.6*4 )
|
||||
self.assertAlmostEqual(.72, graph(assignment))
|
||||
self.assertAlmostEqual(0.72, graph(assignment))
|
||||
|
||||
# Create a new test with third node and adding unary and ternary factor
|
||||
graph.add(P3, "0.9 0.2 0.5")
|
||||
|
@ -100,8 +106,7 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
expectedValues[1] = 0
|
||||
expectedValues[2] = 0
|
||||
actualValues = graph.optimize()
|
||||
self.assertEqual(list(actualValues.items()),
|
||||
list(expectedValues.items()))
|
||||
self.assertEqual(list(actualValues.items()), list(expectedValues.items()))
|
||||
|
||||
def test_MPE(self):
|
||||
"""Test maximum probable explanation (MPE): same as optimize."""
|
||||
|
@ -123,13 +128,11 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
# Use maxProduct
|
||||
dag = graph.maxProduct(OrderingType.COLAMD)
|
||||
actualMPE = dag.argmax()
|
||||
self.assertEqual(list(actualMPE.items()),
|
||||
list(mpe.items()))
|
||||
self.assertEqual(list(actualMPE.items()), list(mpe.items()))
|
||||
|
||||
# All in one
|
||||
actualMPE2 = graph.optimize()
|
||||
self.assertEqual(list(actualMPE2.items()),
|
||||
list(mpe.items()))
|
||||
self.assertEqual(list(actualMPE2.items()), list(mpe.items()))
|
||||
|
||||
def test_sumProduct(self):
|
||||
"""Test sumProduct."""
|
||||
|
@ -154,11 +157,17 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
self.assertAlmostEqual(mpeProbability, 0.36) # regression
|
||||
|
||||
# Use sumProduct
|
||||
for ordering_type in [OrderingType.COLAMD, OrderingType.METIS, OrderingType.NATURAL,
|
||||
OrderingType.CUSTOM]:
|
||||
for ordering_type in [
|
||||
OrderingType.COLAMD,
|
||||
OrderingType.METIS,
|
||||
OrderingType.NATURAL,
|
||||
OrderingType.CUSTOM,
|
||||
]:
|
||||
bayesNet = graph.sumProduct(ordering_type)
|
||||
self.assertEqual(bayesNet(mpe), mpeProbability)
|
||||
|
||||
|
||||
class TestChains(GtsamTestCase):
|
||||
def test_MPE_chain(self):
|
||||
"""
|
||||
Test for numerical underflow in EliminateMPE on long chains.
|
||||
|
@ -170,46 +179,22 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
desired_state = 1
|
||||
states = list(range(num_states))
|
||||
|
||||
# Helper function to mimic the behavior of gtbook.Variables discrete_series function
|
||||
def make_key(character, index, cardinality):
|
||||
symbol = Symbol(character, index)
|
||||
key = symbol.key()
|
||||
return (key, cardinality)
|
||||
|
||||
X = {index: make_key("X", index, len(states)) for index in range(num_obs)}
|
||||
Z = {index: make_key("Z", index, num_obs + 1) for index in range(num_obs)}
|
||||
graph = DiscreteFactorGraph()
|
||||
|
||||
# Mostly identity transition matrix
|
||||
transitions = np.eye(num_states)
|
||||
|
||||
# Needed otherwise mpe is always state 0?
|
||||
transitions += 0.1/(num_states)
|
||||
|
||||
transition_cpt = []
|
||||
for i in range(0, num_states):
|
||||
transition_row = "/".join([str(x) for x in transitions[i]])
|
||||
transition_cpt.append(transition_row)
|
||||
transition_cpt = " ".join(transition_cpt)
|
||||
|
||||
transition_cpt = generate_transition_cpt(num_states)
|
||||
for i in reversed(range(1, num_obs)):
|
||||
transition_conditional = DiscreteConditional(X[i], [X[i-1]], transition_cpt)
|
||||
transition_conditional = DiscreteConditional(
|
||||
X[i], [X[i - 1]], transition_cpt
|
||||
)
|
||||
graph.push_back(transition_conditional)
|
||||
|
||||
# Contrived example such that the desired state gives measurements [0, num_obs) with equal probability
|
||||
# but all other states always give measurement num_obs
|
||||
obs = np.zeros((num_states, num_obs+1))
|
||||
obs[:,-1] = 1
|
||||
obs[desired_state,0: -1] = 1
|
||||
obs[desired_state,-1] = 0
|
||||
obs_cpt_list = []
|
||||
for i in range(0, num_states):
|
||||
obs_row = "/".join([str(z) for z in obs[i]])
|
||||
obs_cpt_list.append(obs_row)
|
||||
obs_cpt = " ".join(obs_cpt_list)
|
||||
|
||||
obs_cpt = generate_observation_cpt(num_states, num_obs, desired_state)
|
||||
# Contrived example where each measurement is its own index
|
||||
for i in range(0, num_obs):
|
||||
for i in range(num_obs):
|
||||
obs_conditional = DiscreteConditional(Z[i], [X[i]], obs_cpt)
|
||||
factor = obs_conditional.likelihood(i)
|
||||
graph.push_back(factor)
|
||||
|
@ -217,7 +202,7 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
mpe = graph.optimize()
|
||||
vals = [mpe[X[i][0]] for i in range(num_obs)]
|
||||
|
||||
self.assertEqual(vals, [desired_state]*num_obs)
|
||||
self.assertEqual(vals, [desired_state] * num_obs)
|
||||
|
||||
def test_sumProduct_chain(self):
|
||||
"""
|
||||
|
@ -227,15 +212,8 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
"""
|
||||
num_states = 3
|
||||
chain_length = 400
|
||||
desired_state = 1
|
||||
states = list(range(num_states))
|
||||
|
||||
# Helper function to mimic the behavior of gtbook.Variables discrete_series function
|
||||
def make_key(character, index, cardinality):
|
||||
symbol = Symbol(character, index)
|
||||
key = symbol.key()
|
||||
return (key, cardinality)
|
||||
|
||||
X = {index: make_key("X", index, len(states)) for index in range(chain_length)}
|
||||
graph = DiscreteFactorGraph()
|
||||
|
||||
|
@ -253,18 +231,15 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
|
||||
# Ensure that the stationary distribution is positive and normalized
|
||||
stationary_dist /= np.sum(stationary_dist)
|
||||
expected = DecisionTreeFactor(X[chain_length-1], stationary_dist.flatten())
|
||||
expected = DecisionTreeFactor(X[chain_length - 1], stationary_dist.ravel())
|
||||
|
||||
# The transition matrix parsed by DiscreteConditional is a row-wise CPT
|
||||
transitions = transitions.T
|
||||
transition_cpt = []
|
||||
for i in range(0, num_states):
|
||||
transition_row = "/".join([str(x) for x in transitions[i]])
|
||||
transition_cpt.append(transition_row)
|
||||
transition_cpt = " ".join(transition_cpt)
|
||||
transition_cpt = generate_transition_cpt(num_states, transitions.T)
|
||||
|
||||
for i in reversed(range(1, chain_length)):
|
||||
transition_conditional = DiscreteConditional(X[i], [X[i-1]], transition_cpt)
|
||||
transition_conditional = DiscreteConditional(
|
||||
X[i], [X[i - 1]], transition_cpt
|
||||
)
|
||||
graph.push_back(transition_conditional)
|
||||
|
||||
# Run sum product using natural ordering so the resulting Bayes net has the form:
|
||||
|
@ -277,5 +252,6 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
# Ensure marginal probabilities are close to the stationary distribution
|
||||
self.gtsamAssertEquals(expected, last_marginal)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
@ -0,0 +1,84 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Unit tests for Discrete Search.
|
||||
Author: Frank Dellaert
|
||||
"""
|
||||
|
||||
# pylint: disable=no-name-in-module, invalid-name
|
||||
|
||||
import unittest
|
||||
|
||||
from dfg_utils import generate_observation_cpt, generate_transition_cpt, make_key
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
from gtsam import (
|
||||
DiscreteConditional,
|
||||
DiscreteFactorGraph,
|
||||
DiscreteSearch,
|
||||
Ordering,
|
||||
DefaultKeyFormatter,
|
||||
)
|
||||
|
||||
OrderingType = Ordering.OrderingType
|
||||
|
||||
|
||||
class TestDiscreteSearch(GtsamTestCase):
|
||||
"""Tests for Discrete Factor Graphs."""
|
||||
|
||||
def test_MPE_chain(self):
|
||||
"""
|
||||
Test for numerical underflow in EliminateMPE on long chains.
|
||||
Adapted from the toy problem of @pcl15423
|
||||
Ref: https://github.com/borglab/gtsam/issues/1448
|
||||
"""
|
||||
num_states = 3
|
||||
num_obs = 200
|
||||
desired_state = 1
|
||||
states = list(range(num_states))
|
||||
|
||||
X = {index: make_key("X", index, len(states)) for index in range(num_obs)}
|
||||
Z = {index: make_key("Z", index, num_obs + 1) for index in range(num_obs)}
|
||||
graph = DiscreteFactorGraph()
|
||||
|
||||
transition_cpt = generate_transition_cpt(num_states)
|
||||
for i in reversed(range(1, num_obs)):
|
||||
transition_conditional = DiscreteConditional(
|
||||
X[i], [X[i - 1]], transition_cpt
|
||||
)
|
||||
graph.push_back(transition_conditional)
|
||||
|
||||
# Contrived example such that the desired state gives measurements [0, num_obs) with equal
|
||||
# probability but all other states always give measurement num_obs
|
||||
obs_cpt = generate_observation_cpt(num_states, num_obs, desired_state)
|
||||
# Contrived example where each measurement is its own index
|
||||
for i in range(num_obs):
|
||||
obs_conditional = DiscreteConditional(Z[i], [X[i]], obs_cpt)
|
||||
factor = obs_conditional.likelihood(i)
|
||||
graph.push_back(factor)
|
||||
|
||||
# Check MPE
|
||||
mpe = graph.optimize()
|
||||
vals = [mpe[X[i][0]] for i in range(num_obs)]
|
||||
self.assertEqual(vals, [desired_state] * num_obs)
|
||||
|
||||
# Create an ordering:
|
||||
ordering = Ordering()
|
||||
for i in reversed(range(num_obs)):
|
||||
ordering.push_back(X[i][0])
|
||||
|
||||
# Now do Search
|
||||
search = DiscreteSearch.FromFactorGraph(graph, ordering)
|
||||
solutions = search.run(K=1)
|
||||
mpe2 = solutions[0].assignment
|
||||
# print({DefaultKeyFormatter(key): value for key, value in mpe2.items()})
|
||||
vals = [mpe2[X[i][0]] for i in range(num_obs)]
|
||||
self.assertEqual(vals, [desired_state] * num_obs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue