Merge pull request #2009 from borglab/feature/search_wrapper
Wrapper for DiscreteSearchrelease/4.3a0
commit
bb0c70b482
|
@ -161,4 +161,6 @@ class GTSAM_EXPORT DiscreteSearch {
|
|||
double lowerBound_; ///< Lower bound on the cost-to-go for the entire search.
|
||||
std::vector<Slot> slots_; ///< The slots to fill in the search.
|
||||
};
|
||||
|
||||
using DiscreteSearchSolution = DiscreteSearch::Solution; // for wrapping
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -464,4 +464,29 @@ class DiscreteJunctionTree {
|
|||
const gtsam::DiscreteCluster& operator[](size_t i) const;
|
||||
};
|
||||
|
||||
#include <gtsam/discrete/DiscreteSearch.h>
|
||||
class DiscreteSearchSolution {
|
||||
double error;
|
||||
gtsam::DiscreteValues assignment;
|
||||
DiscreteSearchSolution(double error, const gtsam::DiscreteValues& assignment);
|
||||
};
|
||||
|
||||
class DiscreteSearch {
|
||||
static DiscreteSearch FromFactorGraph(const gtsam::DiscreteFactorGraph& factorGraph,
|
||||
const gtsam::Ordering& ordering,
|
||||
bool buildJunctionTree = false);
|
||||
|
||||
DiscreteSearch(const gtsam::DiscreteEliminationTree& etree);
|
||||
DiscreteSearch(const gtsam::DiscreteJunctionTree& junctionTree);
|
||||
DiscreteSearch(const gtsam::DiscreteBayesNet& bayesNet);
|
||||
DiscreteSearch(const gtsam::DiscreteBayesTree& bayesTree);
|
||||
|
||||
void print(string name = "DiscreteSearch: ",
|
||||
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
|
||||
|
||||
double lowerBound() const;
|
||||
|
||||
std::vector<gtsam::DiscreteSearchSolution> run(size_t K = 1) const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
import numpy as np
|
||||
from gtsam import Symbol
|
||||
|
||||
|
||||
def make_key(character, index, cardinality):
|
||||
"""
|
||||
Helper function to mimic the behavior of gtbook.Variables discrete_series function.
|
||||
"""
|
||||
symbol = Symbol(character, index)
|
||||
key = symbol.key()
|
||||
return (key, cardinality)
|
||||
|
||||
|
||||
def generate_transition_cpt(num_states, transitions=None):
|
||||
"""
|
||||
Generate a row-wise CPT for a transition matrix.
|
||||
"""
|
||||
if transitions is None:
|
||||
# Default to identity matrix with slight regularization
|
||||
transitions = np.eye(num_states) + 0.1 / num_states
|
||||
|
||||
# Ensure transitions sum to 1 if not already normalized
|
||||
transitions /= np.sum(transitions, axis=1, keepdims=True)
|
||||
return " ".join(["/".join(map(str, row)) for row in transitions])
|
||||
|
||||
|
||||
def generate_observation_cpt(num_states, num_obs, desired_state):
|
||||
"""
|
||||
Generate a row-wise CPT for observations with contrived probabilities.
|
||||
"""
|
||||
obs = np.zeros((num_states, num_obs + 1))
|
||||
obs[:, -1] = 1 # All states default to measurement num_obs
|
||||
obs[desired_state, 0:-1] = 1
|
||||
obs[desired_state, -1] = 0
|
||||
return " ".join(["/".join(map(str, row)) for row in obs])
|
|
@ -15,10 +15,16 @@ import unittest
|
|||
|
||||
import numpy as np
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
from dfg_utils import make_key, generate_transition_cpt, generate_observation_cpt
|
||||
|
||||
from gtsam import (DecisionTreeFactor, DiscreteConditional,
|
||||
DiscreteFactorGraph, DiscreteKeys, DiscreteValues, Ordering,
|
||||
Symbol)
|
||||
from gtsam import (
|
||||
DecisionTreeFactor,
|
||||
DiscreteConditional,
|
||||
DiscreteFactorGraph,
|
||||
DiscreteKeys,
|
||||
DiscreteValues,
|
||||
Ordering,
|
||||
)
|
||||
|
||||
OrderingType = Ordering.OrderingType
|
||||
|
||||
|
@ -50,7 +56,7 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
assignment[1] = 1
|
||||
|
||||
# Check if graph evaluation works ( 0.3*0.6*4 )
|
||||
self.assertAlmostEqual(.72, graph(assignment))
|
||||
self.assertAlmostEqual(0.72, graph(assignment))
|
||||
|
||||
# Create a new test with third node and adding unary and ternary factor
|
||||
graph.add(P3, "0.9 0.2 0.5")
|
||||
|
@ -100,8 +106,7 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
expectedValues[1] = 0
|
||||
expectedValues[2] = 0
|
||||
actualValues = graph.optimize()
|
||||
self.assertEqual(list(actualValues.items()),
|
||||
list(expectedValues.items()))
|
||||
self.assertEqual(list(actualValues.items()), list(expectedValues.items()))
|
||||
|
||||
def test_MPE(self):
|
||||
"""Test maximum probable explanation (MPE): same as optimize."""
|
||||
|
@ -123,13 +128,11 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
# Use maxProduct
|
||||
dag = graph.maxProduct(OrderingType.COLAMD)
|
||||
actualMPE = dag.argmax()
|
||||
self.assertEqual(list(actualMPE.items()),
|
||||
list(mpe.items()))
|
||||
self.assertEqual(list(actualMPE.items()), list(mpe.items()))
|
||||
|
||||
# All in one
|
||||
actualMPE2 = graph.optimize()
|
||||
self.assertEqual(list(actualMPE2.items()),
|
||||
list(mpe.items()))
|
||||
self.assertEqual(list(actualMPE2.items()), list(mpe.items()))
|
||||
|
||||
def test_sumProduct(self):
|
||||
"""Test sumProduct."""
|
||||
|
@ -154,11 +157,17 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
self.assertAlmostEqual(mpeProbability, 0.36) # regression
|
||||
|
||||
# Use sumProduct
|
||||
for ordering_type in [OrderingType.COLAMD, OrderingType.METIS, OrderingType.NATURAL,
|
||||
OrderingType.CUSTOM]:
|
||||
for ordering_type in [
|
||||
OrderingType.COLAMD,
|
||||
OrderingType.METIS,
|
||||
OrderingType.NATURAL,
|
||||
OrderingType.CUSTOM,
|
||||
]:
|
||||
bayesNet = graph.sumProduct(ordering_type)
|
||||
self.assertEqual(bayesNet(mpe), mpeProbability)
|
||||
|
||||
|
||||
class TestChains(GtsamTestCase):
|
||||
def test_MPE_chain(self):
|
||||
"""
|
||||
Test for numerical underflow in EliminateMPE on long chains.
|
||||
|
@ -170,46 +179,22 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
desired_state = 1
|
||||
states = list(range(num_states))
|
||||
|
||||
# Helper function to mimic the behavior of gtbook.Variables discrete_series function
|
||||
def make_key(character, index, cardinality):
|
||||
symbol = Symbol(character, index)
|
||||
key = symbol.key()
|
||||
return (key, cardinality)
|
||||
|
||||
X = {index: make_key("X", index, len(states)) for index in range(num_obs)}
|
||||
Z = {index: make_key("Z", index, num_obs + 1) for index in range(num_obs)}
|
||||
graph = DiscreteFactorGraph()
|
||||
|
||||
# Mostly identity transition matrix
|
||||
transitions = np.eye(num_states)
|
||||
|
||||
# Needed otherwise mpe is always state 0?
|
||||
transitions += 0.1/(num_states)
|
||||
|
||||
transition_cpt = []
|
||||
for i in range(0, num_states):
|
||||
transition_row = "/".join([str(x) for x in transitions[i]])
|
||||
transition_cpt.append(transition_row)
|
||||
transition_cpt = " ".join(transition_cpt)
|
||||
|
||||
transition_cpt = generate_transition_cpt(num_states)
|
||||
for i in reversed(range(1, num_obs)):
|
||||
transition_conditional = DiscreteConditional(X[i], [X[i-1]], transition_cpt)
|
||||
transition_conditional = DiscreteConditional(
|
||||
X[i], [X[i - 1]], transition_cpt
|
||||
)
|
||||
graph.push_back(transition_conditional)
|
||||
|
||||
# Contrived example such that the desired state gives measurements [0, num_obs) with equal probability
|
||||
# but all other states always give measurement num_obs
|
||||
obs = np.zeros((num_states, num_obs+1))
|
||||
obs[:,-1] = 1
|
||||
obs[desired_state,0: -1] = 1
|
||||
obs[desired_state,-1] = 0
|
||||
obs_cpt_list = []
|
||||
for i in range(0, num_states):
|
||||
obs_row = "/".join([str(z) for z in obs[i]])
|
||||
obs_cpt_list.append(obs_row)
|
||||
obs_cpt = " ".join(obs_cpt_list)
|
||||
|
||||
obs_cpt = generate_observation_cpt(num_states, num_obs, desired_state)
|
||||
# Contrived example where each measurement is its own index
|
||||
for i in range(0, num_obs):
|
||||
for i in range(num_obs):
|
||||
obs_conditional = DiscreteConditional(Z[i], [X[i]], obs_cpt)
|
||||
factor = obs_conditional.likelihood(i)
|
||||
graph.push_back(factor)
|
||||
|
@ -217,7 +202,7 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
mpe = graph.optimize()
|
||||
vals = [mpe[X[i][0]] for i in range(num_obs)]
|
||||
|
||||
self.assertEqual(vals, [desired_state]*num_obs)
|
||||
self.assertEqual(vals, [desired_state] * num_obs)
|
||||
|
||||
def test_sumProduct_chain(self):
|
||||
"""
|
||||
|
@ -227,15 +212,8 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
"""
|
||||
num_states = 3
|
||||
chain_length = 400
|
||||
desired_state = 1
|
||||
states = list(range(num_states))
|
||||
|
||||
# Helper function to mimic the behavior of gtbook.Variables discrete_series function
|
||||
def make_key(character, index, cardinality):
|
||||
symbol = Symbol(character, index)
|
||||
key = symbol.key()
|
||||
return (key, cardinality)
|
||||
|
||||
X = {index: make_key("X", index, len(states)) for index in range(chain_length)}
|
||||
graph = DiscreteFactorGraph()
|
||||
|
||||
|
@ -253,18 +231,15 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
|
||||
# Ensure that the stationary distribution is positive and normalized
|
||||
stationary_dist /= np.sum(stationary_dist)
|
||||
expected = DecisionTreeFactor(X[chain_length-1], stationary_dist.flatten())
|
||||
expected = DecisionTreeFactor(X[chain_length - 1], stationary_dist.ravel())
|
||||
|
||||
# The transition matrix parsed by DiscreteConditional is a row-wise CPT
|
||||
transitions = transitions.T
|
||||
transition_cpt = []
|
||||
for i in range(0, num_states):
|
||||
transition_row = "/".join([str(x) for x in transitions[i]])
|
||||
transition_cpt.append(transition_row)
|
||||
transition_cpt = " ".join(transition_cpt)
|
||||
transition_cpt = generate_transition_cpt(num_states, transitions.T)
|
||||
|
||||
for i in reversed(range(1, chain_length)):
|
||||
transition_conditional = DiscreteConditional(X[i], [X[i-1]], transition_cpt)
|
||||
transition_conditional = DiscreteConditional(
|
||||
X[i], [X[i - 1]], transition_cpt
|
||||
)
|
||||
graph.push_back(transition_conditional)
|
||||
|
||||
# Run sum product using natural ordering so the resulting Bayes net has the form:
|
||||
|
@ -277,5 +252,6 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
# Ensure marginal probabilities are close to the stationary distribution
|
||||
self.gtsamAssertEquals(expected, last_marginal)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
@ -0,0 +1,84 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Unit tests for Discrete Search.
|
||||
Author: Frank Dellaert
|
||||
"""
|
||||
|
||||
# pylint: disable=no-name-in-module, invalid-name
|
||||
|
||||
import unittest
|
||||
|
||||
from dfg_utils import generate_observation_cpt, generate_transition_cpt, make_key
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
from gtsam import (
|
||||
DiscreteConditional,
|
||||
DiscreteFactorGraph,
|
||||
DiscreteSearch,
|
||||
Ordering,
|
||||
DefaultKeyFormatter,
|
||||
)
|
||||
|
||||
OrderingType = Ordering.OrderingType
|
||||
|
||||
|
||||
class TestDiscreteSearch(GtsamTestCase):
|
||||
"""Tests for Discrete Factor Graphs."""
|
||||
|
||||
def test_MPE_chain(self):
|
||||
"""
|
||||
Test for numerical underflow in EliminateMPE on long chains.
|
||||
Adapted from the toy problem of @pcl15423
|
||||
Ref: https://github.com/borglab/gtsam/issues/1448
|
||||
"""
|
||||
num_states = 3
|
||||
num_obs = 200
|
||||
desired_state = 1
|
||||
states = list(range(num_states))
|
||||
|
||||
X = {index: make_key("X", index, len(states)) for index in range(num_obs)}
|
||||
Z = {index: make_key("Z", index, num_obs + 1) for index in range(num_obs)}
|
||||
graph = DiscreteFactorGraph()
|
||||
|
||||
transition_cpt = generate_transition_cpt(num_states)
|
||||
for i in reversed(range(1, num_obs)):
|
||||
transition_conditional = DiscreteConditional(
|
||||
X[i], [X[i - 1]], transition_cpt
|
||||
)
|
||||
graph.push_back(transition_conditional)
|
||||
|
||||
# Contrived example such that the desired state gives measurements [0, num_obs) with equal
|
||||
# probability but all other states always give measurement num_obs
|
||||
obs_cpt = generate_observation_cpt(num_states, num_obs, desired_state)
|
||||
# Contrived example where each measurement is its own index
|
||||
for i in range(num_obs):
|
||||
obs_conditional = DiscreteConditional(Z[i], [X[i]], obs_cpt)
|
||||
factor = obs_conditional.likelihood(i)
|
||||
graph.push_back(factor)
|
||||
|
||||
# Check MPE
|
||||
mpe = graph.optimize()
|
||||
vals = [mpe[X[i][0]] for i in range(num_obs)]
|
||||
self.assertEqual(vals, [desired_state] * num_obs)
|
||||
|
||||
# Create an ordering:
|
||||
ordering = Ordering()
|
||||
for i in reversed(range(num_obs)):
|
||||
ordering.push_back(X[i][0])
|
||||
|
||||
# Now do Search
|
||||
search = DiscreteSearch.FromFactorGraph(graph, ordering)
|
||||
solutions = search.run(K=1)
|
||||
mpe2 = solutions[0].assignment
|
||||
# print({DefaultKeyFormatter(key): value for key, value in mpe2.items()})
|
||||
vals = [mpe2[X[i][0]] for i in range(num_obs)]
|
||||
self.assertEqual(vals, [desired_state] * num_obs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue