Merge remote-tracking branch 'origin/develop' into feature/concurrent-calibration

release/4.3a0
cbeall3 2014-07-02 15:49:47 -04:00
commit f261a6ddbc
59 changed files with 1517 additions and 1506 deletions

2332
.cproject

File diff suppressed because it is too large Load Diff

View File

@ -46,7 +46,6 @@ endif()
# Set up options
# Configurable Options
option(GTSAM_BUILD_TIMING "Enable/Disable building of timing scripts" OFF) # These do not currently work
if(GTSAM_UNSTABLE_AVAILABLE)
option(GTSAM_BUILD_UNSTABLE "Enable/Disable libgtsam_unstable" ON)
endif()
@ -304,6 +303,9 @@ add_subdirectory(tests)
# Build examples
add_subdirectory(examples)
# Build timing
add_subdirectory(timing)
# Matlab toolbox
if (GTSAM_INSTALL_MATLAB_TOOLBOX)
add_subdirectory(matlab)
@ -361,7 +363,7 @@ message(STATUS "================ Configuration Options ======================"
message(STATUS "Build flags ")
print_config_flag(${GTSAM_BUILD_TESTS} "Build Tests ")
print_config_flag(${GTSAM_BUILD_EXAMPLES_ALWAYS} "Build examples with 'make all' ")
print_config_flag(${GTSAM_BUILD_TIMING} "Build Timing scripts ")
print_config_flag(${GTSAM_BUILD_TIMING_ALWAYS} "Build timing scripts with 'make all'")
if (DOXYGEN_FOUND)
print_config_flag(${GTSAM_BUILD_DOCS} "Build Docs ")
endif()

View File

@ -38,21 +38,46 @@ endmacro()
#
# Add scripts that will serve as examples of how to use the library. A list of files or
# glob patterns is specified, and one executable will be created for each matching .cpp
# file. These executables will not be installed. They are build with 'make all' if
# file. These executables will not be installed. They are built with 'make all' if
# GTSAM_BUILD_EXAMPLES_ALWAYS is enabled. They may also be built with 'make examples'.
#
# Usage example:
# gtsamAddExamplesGlob("*.cpp" "BrokenExample.cpp" "gtsam;GeographicLib")
#
# Arguments:
# globPatterns: The list of files or glob patterns from which to create unit tests, with
# one test created for each cpp file. e.g. "*.cpp", or
# globPatterns: The list of files or glob patterns from which to create examples, with
# one program created for each cpp file. e.g. "*.cpp", or
# "A*.cpp;B*.cpp;MyExample.cpp".
# excludedFiles: A list of files or globs to exclude, e.g. "C*.cpp;BrokenExample.cpp". Pass
# an empty string "" if nothing needs to be excluded.
# linkLibraries: The list of libraries to link to.
macro(gtsamAddExamplesGlob globPatterns excludedFiles linkLibraries)
gtsamAddExamplesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}")
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "examples" ${GTSAM_BUILD_EXAMPLES_ALWAYS})
endmacro()
###############################################################################
# Macro:
#
# gtsamAddTimingGlob(globPatterns excludedFiles linkLibraries)
#
# Add scripts that time aspects of the library. A list of files or
# glob patterns is specified, and one executable will be created for each matching .cpp
# file. These executables will not be installed. They are not built with 'make all',
# but they may be built with 'make timing'.
#
# Usage example:
# gtsamAddTimingGlob("*.cpp" "DisabledTimingScript.cpp" "gtsam;GeographicLib")
#
# Arguments:
# globPatterns: The list of files or glob patterns from which to create programs, with
# one program created for each cpp file. e.g. "*.cpp", or
# "A*.cpp;B*.cpp;MyExample.cpp".
# excludedFiles: A list of files or globs to exclude, e.g. "C*.cpp;BrokenExample.cpp". Pass
# an empty string "" if nothing needs to be excluded.
# linkLibraries: The list of libraries to link to.
macro(gtsamAddTimingGlob globPatterns excludedFiles linkLibraries)
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "timing" ${GTSAM_BUILD_TIMING_ALWAYS})
endmacro()
@ -63,6 +88,7 @@ enable_testing()
option(GTSAM_BUILD_TESTS "Enable/Disable building of tests" ON)
option(GTSAM_BUILD_EXAMPLES_ALWAYS "Build examples with 'make all' (build with 'make examples' if not)" ON)
option(GTSAM_BUILD_TIMING_ALWAYS "Build timing scripts with 'make all' (build with 'make timing' if not" OFF)
# Add option for combining unit tests
if(MSVC OR XCODE_VERSION)
@ -80,6 +106,9 @@ endif()
# Add examples target
add_custom_target(examples)
# Add timing target
add_custom_target(timing)
# Include obsolete macros - will be removed in the near future
include(GtsamTestingObsolete)
@ -180,7 +209,7 @@ macro(gtsamAddTestsGlob_impl groupName globPatterns excludedFiles linkLibraries)
endmacro()
macro(gtsamAddExamplesGlob_impl globPatterns excludedFiles linkLibraries)
macro(gtsamAddExesGlob_impl globPatterns excludedFiles linkLibraries groupName buildWithAll)
# Get all script files
file(GLOB script_files ${globPatterns})
@ -220,7 +249,7 @@ macro(gtsamAddExamplesGlob_impl globPatterns excludedFiles linkLibraries)
target_link_libraries(${script_name} ${linkLibraries})
# Add target dependencies
add_dependencies(examples ${script_name})
add_dependencies(${groupName} ${script_name})
if(NOT MSVC AND NOT XCODE_VERSION)
add_custom_target(${script_name}.run ${EXECUTABLE_OUTPUT_PATH}${script_name})
endif()
@ -228,12 +257,14 @@ macro(gtsamAddExamplesGlob_impl globPatterns excludedFiles linkLibraries)
# Add TOPSRCDIR
set_property(SOURCE ${script_src} APPEND PROPERTY COMPILE_DEFINITIONS "TOPSRCDIR=\"${PROJECT_SOURCE_DIR}\"")
if(NOT GTSAM_BUILD_EXAMPLES_ALWAYS)
# Exclude from all or not - note weird variable assignment because we're in a macro
set(buildWithAll_on ${buildWithAll})
if(NOT buildWithAll_on)
# Exclude from 'make all' and 'make install'
set_target_properties(${target_name} PROPERTIES EXCLUDE_FROM_ALL ON)
set_target_properties("${script_name}" PROPERTIES EXCLUDE_FROM_ALL ON)
endif()
# Configure target folder (for MSVC and Xcode)
set_property(TARGET ${script_name} PROPERTY FOLDER "Examples")
set_property(TARGET ${script_name} PROPERTY FOLDER "${groupName}")
endforeach()
endmacro()

View File

@ -14,6 +14,7 @@
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
* @author Duy-Nguyen Ta
* @author Jing Dong
* @author Frank Dellaert
*/
/**
@ -28,11 +29,6 @@
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'.
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
@ -65,8 +61,8 @@ using namespace std;
using namespace gtsam;
// Make the typename short so it looks much cleaner
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2>
SmartFactor;
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3,
gtsam::Cal3_S2> SmartFactor;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
@ -75,93 +71,87 @@ int main(int argc, char* argv[]) {
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
noiseModel::Isotropic::shared_ptr measurementNoise =
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks
// Create the set of ground-truth landmarks and poses
vector<Point3> points = createPoints();
// Create the set of ground-truth poses
vector<Pose3> poses = createPoses();
// Create a factor graph
NonlinearFactorGraph graph;
// A vector saved all Smart factors (for get landmark position after optimization)
vector<SmartFactor::shared_ptr> smartfactors_ptr;
// Simulated measurements from each camera pose, adding them to the factor graph
for (size_t i = 0; i < points.size(); ++i) {
for (size_t j = 0; j < points.size(); ++j) {
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
SmartFactor::shared_ptr smartfactor(new SmartFactor());
for (size_t j = 0; j < poses.size(); ++j) {
for (size_t i = 0; i < poses.size(); ++i) {
// generate the 2D measurement
SimpleCamera camera(poses[j], *K);
Point2 measurement = camera.project(points[i]);
SimpleCamera camera(poses[i], *K);
Point2 measurement = camera.project(points[j]);
// call add() function to add measurment into a single factor, here we need to add:
// call add() function to add measurement into a single factor, here we need to add:
// 1. the 2D measurement
// 2. the corresponding camera's key
// 3. camera noise model
// 4. camera calibration
smartfactor->add(measurement, Symbol('x', j), measurementNoise, K);
smartfactor->add(measurement, i, measurementNoise, K);
}
// save smartfactors to get landmark position
smartfactors_ptr.push_back(smartfactor);
// insert the smart factor in the graph
graph.push_back(smartfactor);
}
// Add a prior on pose x0. This indirectly specifies where the origin is.
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)));
graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise));
// Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
// Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
// Because these two are fixed, the rest poses will be alse fixed.
graph.push_back(PriorFactor<Pose3>(Symbol('x', 1), poses[1], poseNoise)); // add directly to graph
// Because the structure-from-motion problem has a scale ambiguity, the problem is
// still under-constrained. Here we add a prior on the second pose x1, so this will
// fix the scale by indicating the distance between x0 and x1.
// Because these two are fixed, the rest of the poses will be also be fixed.
graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise)); // add directly to graph
graph.print("Factor Graph:\n");
// Create the data structure to hold the initial estimate to the solution
// Create the initial estimate to the solution
// Intentionally initialize the variables off from the ground truth
Values initialEstimate;
Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
for (size_t i = 0; i < poses.size(); ++i)
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
initialEstimate.insert(i, poses[i].compose(delta));
initialEstimate.print("Initial Estimates:\n");
// Optimize the graph and print results
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
result.print("Final results:\n");
// Notice: Smart factor represent the 3D point as a factor, not a variable.
// A smart factor represent the 3D point inside the factor, not as a variable.
// The 3D position of the landmark is not explicitly calculated by the optimizer.
// If you do want to output the landmark's 3D position, you should use the internal function point()
// of the smart factor to get the 3D point.
// To obtain the landmark's 3D position, we use the "point" method of the smart factor.
Values landmark_result;
for (size_t i = 0; i < points.size(); ++i) {
for (size_t j = 0; j < points.size(); ++j) {
// The output of point() is in boost::optional<gtsam::Point3>, since sometimes
// the triangulation opterations inside smart factor will encounter degeneracy.
// Check the manual of boost::optional for more details for the usages.
// The output of point() is in boost::optional<gtsam::Point3>, as sometimes
// the triangulation operation inside smart factor will encounter degeneracy.
boost::optional<Point3> point;
// here we use the saved smart factors to call, pass in all optimized pose to calculate landmark positions
point = smartfactors_ptr.at(i)->point(result);
// ignore if boost::optional return NULL
if (point)
landmark_result.insert(Symbol('l', i), *point);
// The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first
SmartFactor::shared_ptr smart = boost::dynamic_pointer_cast<SmartFactor>(graph[j]);
if (smart) {
point = smart->point(result);
if (point) // ignore if boost::optional return NULL
landmark_result.insert(j, *point);
}
}
landmark_result.print("Landmark results:\n");
return 0;
}
/* ************************************************************************* */

View File

@ -43,8 +43,7 @@ int main (int argc, char* argv[]) {
// Load the SfM data from file
SfM_data mydata;
const bool success = readBAL(filename, mydata);
assert(success);
assert(readBAL(filename, mydata));
cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();
// Create a factor graph

View File

@ -7,9 +7,3 @@ install(FILES ${base_headers_tree} DESTINATION include/gtsam/base/treeTraversal)
# Build tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(base "gtsam" "gtsam" "${base_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -6,9 +6,3 @@ install(FILES ${discrete_headers} DESTINATION include/gtsam/discrete)
# Add all tests
add_subdirectory(tests)
# Build timing scripts
#if (GTSAM_BUILD_TIMING)
# gtsam_add_timing(discrete "${discrete_local_libs}")
#endif(GTSAM_BUILD_TIMING)

View File

@ -4,9 +4,3 @@ install(FILES ${geometry_headers} DESTINATION include/gtsam/geometry)
# Build tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(geometry "gtsam" "gtsam" "${geometry_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -112,6 +112,16 @@ public:
return E_;
}
/// Return epipole in image_a , as Unit3 to allow for infinity
inline const Unit3& epipole_a() const {
return aTb_; // == direction()
}
/// Return epipole in image_b, as Unit3 to allow for infinity
inline Unit3 epipole_b() const {
return aRb_.unrotate(aTb_); // == rotation.unrotate(direction())
}
/**
* @brief takes point in world coordinates and transforms it to pose with |t|==1
* @param p point in world coordinates

View File

@ -275,11 +275,12 @@ public:
if (P.z() <= 0)
throw CheiralityException();
#endif
double d = 1.0 / P.z();
const double u = P.x() * d, v = P.y() * d;
if (Dpoint) {
double d = 1.0 / P.z(), d2 = d * d;
*Dpoint = (Matrix(2, 3) << d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2);
*Dpoint = (Matrix(2, 3) << d, 0.0, -u * d, 0.0, d, -v * d);
}
return Point2(P.x() / P.z(), P.y() / P.z());
return Point2(u, v);
}
/// Project a point into the image and check depth

View File

@ -58,7 +58,7 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
}
/* ************************************************************************* */
Matrix Unit3::basis() const {
const Matrix& Unit3::basis() const {
// Return cached version if exists
if (B_.rows() == 3)

View File

@ -84,7 +84,7 @@ public:
* It is a 3*2 matrix [b1 b2] composed of two orthogonal directions
* tangent to the sphere at the current direction.
*/
Matrix basis() const;
const Matrix& basis() const;
/// Return skew-symmetric associated with 3D point on unit sphere
Matrix skew() const;

View File

@ -144,9 +144,9 @@ TEST (EssentialMatrix, FromPose3_b) {
Matrix actualH;
Rot3 c1Rc2 = Rot3::ypr(0.1, -0.2, 0.3);
Point3 c1Tc2(0.4, 0.5, 0.6);
EssentialMatrix trueE(c1Rc2, Unit3(c1Tc2));
EssentialMatrix E(c1Rc2, Unit3(c1Tc2));
Pose3 pose(c1Rc2, c1Tc2); // Pose between two cameras
EXPECT(assert_equal(trueE, EssentialMatrix::FromPose3(pose, actualH), 1e-8));
EXPECT(assert_equal(E, EssentialMatrix::FromPose3(pose, actualH), 1e-8));
Matrix expectedH = numericalDerivative11<EssentialMatrix, Pose3>(
boost::bind(EssentialMatrix::FromPose3, _1, boost::none), pose);
EXPECT(assert_equal(expectedH, actualH, 1e-5));
@ -161,6 +161,35 @@ TEST (EssentialMatrix, streaming) {
EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, epipoles) {
// Create an E
Rot3 c1Rc2 = Rot3::ypr(0.1, -0.2, 0.3);
Point3 c1Tc2(0.4, 0.5, 0.6);
EssentialMatrix E(c1Rc2, Unit3(c1Tc2));
// Calculate expected values through SVD
Matrix U, V;
Vector S;
gtsam::svd(E.matrix(), U, S, V);
// check rank 2 constraint
CHECK(fabs(S(2))<1e-10);
// check epipoles not at infinity
CHECK(fabs(U(2,2))>1e-10 && fabs(V(2,2))>1e-10);
// Check epipoles
// Epipole in image 1 is just E.direction()
Unit3 e1(U(0, 2), U(1, 2), U(2, 2));
EXPECT(assert_equal(e1, E.epipole_a()));
// Epipole in image 2 is E.rotation().unrotate(E.direction())
Unit3 e2(V(0, 2), V(1, 2), V(2, 2));
EXPECT(assert_equal(e2, E.epipole_b()));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -4,9 +4,3 @@ install(FILES ${inference_headers} DESTINATION include/gtsam/inference)
# Build tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(inference "gtsam" "gtsam" "${inference_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -4,8 +4,3 @@ install(FILES ${linear_headers} DESTINATION include/gtsam/linear)
# Build tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(linear "gtsam" "gtsam" "${linear_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -104,6 +104,7 @@ namespace gtsam {
class GTSAM_EXPORT KeyInfoEntry : public boost::tuple<size_t, size_t, size_t> {
public:
typedef boost::tuple<Key,size_t,Key> Base;
KeyInfoEntry(){}
KeyInfoEntry(size_t idx, size_t d, Key start) : Base(idx, d, start) {}
const size_t index() const { return this->get<0>(); }
const size_t dim() const { return this->get<1>(); }

View File

@ -157,8 +157,6 @@ namespace gtsam {
Weights weights(const GaussianFactorGraph &gfg) const;
SubgraphBuilderParameters parameters_;
private:
SubgraphBuilder() {}
};
/*******************************************************************************************/

View File

@ -1,144 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file timeSLAMlike.cpp
* @brief Times solving of random SLAM-like graphs
* @author Richard Roberts
* @date Aug 30, 2010
*/
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <boost/random.hpp>
#include <boost/timer.hpp>
#include <boost/bind.hpp>
#include <boost/lambda/lambda.hpp>
#include <vector>
using namespace gtsam;
using namespace std;
using namespace boost::lambda;
typedef EliminationTree<JacobianFactor> GaussianEliminationTree;
static boost::variate_generator<boost::mt19937, boost::uniform_real<> > rg(boost::mt19937(), boost::uniform_real<>(0.0, 1.0));
bool _pair_compare(const pair<Index, Matrix>& a1, const pair<Index, Matrix>& a2) { return a1.first < a2.first; }
int main(int argc, char *argv[]) {
size_t vardim = 3;
size_t blockdim = 3;
int nVars = 500;
size_t blocksPerVar = 5;
size_t varsPerBlock = 2;
size_t varSpread = 10;
size_t nTrials = 10;
double blockbuild, blocksolve;
cout << "\n" << nVars << " variables of dimension " << vardim << ", " <<
blocksPerVar << " blocks for each variable, blocks of dimension " << blockdim << " measure " << varsPerBlock << " variables\n";
cout << nTrials << " trials\n";
boost::variate_generator<boost::mt19937, boost::uniform_int<> > ri(boost::mt19937(), boost::uniform_int<>(-varSpread, varSpread));
/////////////////////////////////////////////////////////////////////////////
// Timing test with blockwise Gaussian factor graphs
{
// Build GFG's
cout << "Building SLAM-like Gaussian factor graphs... ";
cout.flush();
boost::timer timer;
timer.restart();
vector<GaussianFactorGraph> blockGfgs;
blockGfgs.reserve(nTrials);
for(size_t trial=0; trial<nTrials; ++trial) {
blockGfgs.push_back(GaussianFactorGraph());
SharedDiagonal noise = noiseModel::Isotropic::Sigma(blockdim, 1.0);
for(int c=0; c<nVars; ++c) {
for(size_t d=0; d<blocksPerVar; ++d) {
vector<pair<Index, Matrix> > terms; terms.reserve(varsPerBlock);
if(c == 0 && d == 0)
// If it's the first factor, just make a prior
terms.push_back(make_pair(0, eye(vardim)));
else if(c != 0) {
// Generate a random Gaussian factor
for(size_t h=0; h<varsPerBlock; ++h) {
int var;
// If it's the first factor for this variable, make it "odometry"
if(d == 0 && h == 0)
var = c-1;
else if(d == 0 && h == 1)
var = c;
else
// Choose random variable ids
do
var = c + ri();
while(var < 0 || var > nVars-1 || find_if(terms.begin(), terms.end(),
boost::bind(&pair<Index, Matrix>::first, boost::lambda::_1) == Index(var)) != terms.end());
Matrix A(blockdim, vardim);
for(size_t j=0; j<blockdim; ++j)
for(size_t k=0; k<vardim; ++k)
A(j,k) = rg();
terms.push_back(make_pair(Index(var), A));
}
}
Vector b(blockdim);
sort(terms.begin(), terms.end(), &_pair_compare);
for(size_t j=0; j<blockdim; ++j)
b(j) = rg();
if(!terms.empty())
blockGfgs[trial].push_back(JacobianFactor::shared_ptr(new JacobianFactor(terms, b, noise)));
}
}
// if(trial == 0)
// blockGfgs.front().print("GFG: ");
}
blockbuild = timer.elapsed();
cout << blockbuild << " s" << endl;
// Solve GFG's
cout << "Solving SLAM-like Gaussian factor graphs... ";
cout.flush();
timer.restart();
for(size_t trial=0; trial<nTrials; ++trial) {
// cout << "Trial " << trial << endl;
VectorValues soln(*GaussianMultifrontalSolver(blockGfgs[trial]).optimize());
}
blocksolve = timer.elapsed();
cout << blocksolve << " s" << endl;
}
/////////////////////////////////////////////////////////////////////////////
// Print per-graph times
cout << "\nPer-factor-graph times for building and solving\n";
cout << " total " << (1000.0*(blockbuild+blocksolve)/double(nTrials)) <<
" build " << (1000.0*blockbuild/double(nTrials)) <<
" solve " << (1000.0*blocksolve/double(nTrials)) << " ms/graph\n";
cout << endl;
return 0;
}
/**
* @file timeSLAMlike.cpp
* @brief
* @author Richard Roberts
* @date Aug 30, 2010
*/

View File

@ -4,8 +4,3 @@ install(FILES ${navigation_headers} DESTINATION include/gtsam/navigation)
# Add all tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(navigation "gtsam" "gtsam" "${navigation_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -4,9 +4,3 @@ install(FILES ${nonlinear_headers} DESTINATION include/gtsam/nonlinear)
# Build tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(nonlinear "gtsam" "gtsam" "${nonlinear_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -37,7 +37,7 @@ using boost::adaptors::map_values;
/* ************************************************************************* */
LevenbergMarquardtParams::VerbosityLM LevenbergMarquardtParams::verbosityLMTranslator(
const std::string &src) const {
const std::string &src) {
std::string s = src;
boost::algorithm::to_upper(s);
if (s == "SILENT")
@ -59,7 +59,7 @@ LevenbergMarquardtParams::VerbosityLM LevenbergMarquardtParams::verbosityLMTrans
/* ************************************************************************* */
std::string LevenbergMarquardtParams::verbosityLMTranslator(
VerbosityLM value) const {
VerbosityLM value) {
std::string s;
switch (value) {
case LevenbergMarquardtParams::SILENT:

View File

@ -41,9 +41,8 @@ public:
SILENT = 0, TERMINATION, LAMBDA, TRYLAMBDA, TRYCONFIG, DAMPED, TRYDELTA
};
private:
VerbosityLM verbosityLMTranslator(const std::string &s) const;
std::string verbosityLMTranslator(VerbosityLM value) const;
static VerbosityLM verbosityLMTranslator(const std::string &s);
static std::string verbosityLMTranslator(VerbosityLM value);
public:

View File

@ -14,7 +14,7 @@ namespace gtsam {
/* ************************************************************************* */
NonlinearOptimizerParams::Verbosity NonlinearOptimizerParams::verbosityTranslator(
const std::string &src) const {
const std::string &src) {
std::string s = src;
boost::algorithm::to_upper(s);
if (s == "SILENT")
@ -36,7 +36,7 @@ NonlinearOptimizerParams::Verbosity NonlinearOptimizerParams::verbosityTranslato
/* ************************************************************************* */
std::string NonlinearOptimizerParams::verbosityTranslator(
Verbosity value) const {
Verbosity value) {
std::string s;
switch (value) {
case NonlinearOptimizerParams::SILENT:

View File

@ -84,9 +84,8 @@ public:
verbosity = verbosityTranslator(src);
}
private:
Verbosity verbosityTranslator(const std::string &s) const;
std::string verbosityTranslator(Verbosity value) const;
static Verbosity verbosityTranslator(const std::string &s) ;
static std::string verbosityTranslator(Verbosity value) ;
// Successive Linearization Parameters

View File

@ -8,8 +8,3 @@ install(FILES ${slam_headers} DESTINATION include/gtsam/slam)
# Build tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(slam "gtsam" "gtsam" "${slam_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -4,9 +4,3 @@ install(FILES ${symbolic_headers} DESTINATION include/gtsam/symbolic)
# Build tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(symbolic "gtsam" "gtsam" "${symbolic_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -119,3 +119,5 @@ endif(GTSAM_INSTALL_MATLAB_TOOLBOX)
# Build examples
add_subdirectory(examples)
# Build timing
add_subdirectory(timing)

View File

@ -4,8 +4,3 @@ install(FILES ${base_headers} DESTINATION include/gtsam_unstable/base)
# Add all tests
add_subdirectory(tests)
# Build timing scripts
if (GTSAM_BUILD_TIMING)
gtsam_add_subdir_timing(base_unstable "${base_full_libs}" "${base_full_libs}" "${base_excluded_files}")
endif(GTSAM_BUILD_TIMING)

View File

@ -333,6 +333,10 @@ virtual class BetweenFactorEM : gtsam::NonlinearFactor {
void set_flag_bump_up_near_zero_probs(bool flag);
bool get_flag_bump_up_near_zero_probs() const;
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph);
Matrix get_model_inlier_cov();
Matrix get_model_outlier_cov();
void serializable() const; // enabling serialization functionality
};

View File

@ -2,6 +2,4 @@
file(GLOB partition_headers "*.h")
install(FILES ${partition_headers} DESTINATION include/gtsam_unstable/parition)
set(ignore_test "tests/testNestedDissection.cpp")
# Add all tests
gtsamAddTestsGlob(partition_unstable "tests/*.cpp" "${ignore_test}" "gtsam_unstable;metis")
add_subdirectory(tests)

View File

@ -0,0 +1,2 @@
set(ignore_test "testNestedDissection.cpp")
gtsamAddTestsGlob(partition "test*.cpp" "${ignore_test}" "gtsam_unstable")

View File

@ -21,6 +21,7 @@
#include <gtsam/base/Lie.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/nonlinear/Marginals.h>
namespace gtsam {
@ -292,6 +293,77 @@ namespace gtsam {
return flag_bump_up_near_zero_probs_;
}
/* ************************************************************************* */
SharedGaussian get_model_inlier() const {
return model_inlier_;
}
/* ************************************************************************* */
SharedGaussian get_model_outlier() const {
return model_outlier_;
}
/* ************************************************************************* */
Matrix get_model_inlier_cov() const {
return (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
}
/* ************************************************************************* */
Matrix get_model_outlier_cov() const {
return (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
}
/* ************************************************************************* */
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
* (note these are given in the E step, where indicator probabilities are calculated).
*
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
*
* TODO: improve efficiency (info form)
*/
const T& p1 = values.at<T>(key1_);
const T& p2 = values.at<T>(key2_);
Matrix H1, H2;
T hx = p1.between(p2, H1, H2); // h(x)
// get joint covariance of the involved states
std::vector<gtsam::Key> Keys;
Keys.push_back(key1_);
Keys.push_back(key2_);
Marginals marginals( graph, values, Marginals::QR );
JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
Matrix cov1 = joint_marginal12(key1_, key1_);
Matrix cov2 = joint_marginal12(key2_, key2_);
Matrix cov12 = joint_marginal12(key1_, key2_);
Matrix H;
H.resize(H1.rows(), H1.rows()+H2.rows());
H << H1, H2; // H = [H1 H2]
Matrix joint_cov;
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
joint_cov << cov1, cov12,
cov12.transpose(), cov2;
Matrix cov_state = H*joint_cov*H.transpose();
// model_inlier_->print("before:");
// update inlier and outlier noise models
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
// model_inlier_->print("after:");
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
}
/* ************************************************************************* */
/** return the measured */
const VALUE& measured() const {

View File

@ -14,11 +14,13 @@
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
using namespace std;
using namespace gtsam;
// Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below
// to reenable the test.
#if 0
@ -251,6 +253,49 @@ TEST( BetweenFactorEM, CaseStudy)
}
}
///* ************************************************************************** */
TEST (BetweenFactorEM, updateNoiseModel ) {
gtsam::Key key1(1);
gtsam::Key key2(2);
gtsam::Pose2 p1(10.0, 15.0, 0.1);
gtsam::Pose2 p2(15.0, 15.0, 0.3);
gtsam::Pose2 noise(0.5, 0.4, 0.01);
gtsam::Pose2 rel_pose_ideal = p1.between(p2);
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
gtsam::Values values;
values.insert(key1, p1);
values.insert(key2, p2);
double prior_outlier = 0.0;
double prior_inlier = 1.0;
BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
prior_inlier, prior_outlier);
SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2));
NonlinearFactorGraph graph;
graph.push_back(gtsam::PriorFactor<Pose2>(key1, p1, model));
graph.push_back(gtsam::PriorFactor<Pose2>(key2, p2, model));
f.updateNoiseModels(values, graph);
SharedGaussian model_inlier_new = f.get_model_inlier();
SharedGaussian model_outlier_new = f.get_model_outlier();
model_inlier->print("model_inlier:");
model_outlier->print("model_outlier:");
model_inlier_new->print("model_inlier_new:");
model_outlier_new->print("model_outlier_new:");
}
#endif
/* ************************************************************************* */

View File

@ -0,0 +1 @@
gtsamAddTimingGlob("*.cpp" "" "gtsam_unstable")

View File

@ -20,9 +20,9 @@
#include <gtsam_unstable/slam/InertialNavFactor_GlobalVelocity.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/Key.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/inference/Key.h>
using namespace std;
using namespace gtsam;
@ -32,7 +32,7 @@ gtsam::Rot3 world_R_ECEF(
0.85173, -0.52399, 0,
0.41733, 0.67835, -0.60471);
gtsam::Vector ECEF_omega_earth((Vec(3) << 0.0, 0.0, 7.292115e-5));
gtsam::Vector ECEF_omega_earth((Vector(3) << 0.0, 0.0, 7.292115e-5));
gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
/* ************************************************************************* */
@ -54,16 +54,16 @@ int main() {
gtsam::Key BiasKey1(31);
double measurement_dt(0.1);
Vector world_g((Vec(3) << 0.0, 0.0, 9.81));
Vector world_rho((Vec(3) << 0.0, -1.5724e-05, 0.0)); // NED system
gtsam::Vector ECEF_omega_earth((Vec(3) << 0.0, 0.0, 7.292115e-5));
Vector world_g((Vector(3) << 0.0, 0.0, 9.81));
Vector world_rho((Vector(3) << 0.0, -1.5724e-05, 0.0)); // NED system
gtsam::Vector ECEF_omega_earth((Vector(3) << 0.0, 0.0, 7.292115e-5));
gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
// Second test: zero angular motion, some acceleration - generated in matlab
Vector measurement_acc((Vec(3) << 6.501390843381716, -6.763926150509185, -2.300389940090343));
Vector measurement_gyro((Vec(3) << 0.1, 0.2, 0.3));
Vector measurement_acc((Vector(3) << 6.501390843381716, -6.763926150509185, -2.300389940090343));
Vector measurement_gyro((Vector(3) << 0.1, 0.2, 0.3));
InertialNavFactor_GlobalVelocity<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
@ -72,7 +72,7 @@ int main() {
-0.652537293, 0.709880342, 0.265075427);
Point3 t1(2.0,1.0,3.0);
Pose3 Pose1(R1, t1);
LieVector Vel1(3,0.5,-0.5,0.4);
LieVector Vel1 = Vector((Vector(3) << 0.5,-0.5,0.4));
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
0.609241153, 0.67099888, -0.422594037,
-0.636011287, 0.731761397, 0.244979388);
@ -99,7 +99,7 @@ int main() {
GaussianFactorGraph graph;
gttic_(LinearizeTiming);
for(size_t i = 0; i < 100000; ++i) {
GaussianFactor::shared_ptr g = f.linearize(values, ordering);
GaussianFactor::shared_ptr g = f.linearize(values);
graph.push_back(g);
}
gttoc_(LinearizeTiming);

View File

@ -14,16 +14,3 @@ if(MSVC)
set_property(SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/testSerializationSLAM.cpp"
APPEND PROPERTY COMPILE_FLAGS "/bigobj")
endif()
# Build timing scripts
if (GTSAM_BUILD_TIMING)
# Subdirectory target for timing - does not actually execute the scripts
add_custom_target(timing.tests)
set(is_test FALSE)
# Build grouped benchmarks
gtsam_add_grouped_scripts("tests" # Use subdirectory as group label
"time*.cpp" timing "Timing Benchmark" # Standard for all timing scripts
"${tests_full_libs}" "${tests_full_libs}" "${tests_exclude}" # Pass in linking and exclusion lists
${is_test})
endif (GTSAM_BUILD_TIMING)

3
timing/CMakeLists.txt Normal file
View File

@ -0,0 +1,3 @@
gtsamAddTimingGlob("*.cpp" "" "gtsam")
target_link_libraries(timeGaussianFactorGraph CppUnitLite)

View File

@ -27,11 +27,11 @@ int main()
{
int n = 100000;
const Pose3 pose1((Matrix)(Mat(3,3) <<
const Pose3 pose1(Matrix3((Matrix(3,3) <<
1., 0., 0.,
0.,-1., 0.,
0., 0.,-1.
),
)),
Point3(0,0,0.5));
const CalibratedCamera camera(pose1);

View File

@ -16,30 +16,29 @@
* @date Aug 20, 2010
*/
#include <gtsam/base/timing.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/inference/EliminationTree-inl.h>
#include <gtsam/linear/VectorValues.h>
#include <boost/random.hpp>
#include <boost/timer.hpp>
#include <vector>
using namespace gtsam;
using namespace std;
typedef EliminationTree<GaussianFactor> GaussianEliminationTree;
static boost::variate_generator<boost::mt19937, boost::uniform_real<> > rg(boost::mt19937(), boost::uniform_real<>(0.0, 1.0));
int main(int argc, char *argv[]) {
Index key = 0;
Key key = 0;
size_t vardim = 2;
size_t blockdim = 1;
size_t nBlocks = 2000;
size_t nBlocks = 4000;
size_t nTrials = 10;
size_t nTrials = 20;
double blockbuild, blocksolve, combbuild, combsolve;
@ -54,8 +53,7 @@ int main(int argc, char *argv[]) {
// Build GFG's
cout << "Building blockwise Gaussian factor graphs... ";
cout.flush();
boost::timer timer;
timer.restart();
gttic_(blockbuild);
vector<GaussianFactorGraph> blockGfgs;
blockGfgs.reserve(nTrials);
for(size_t trial=0; trial<nTrials; ++trial) {
@ -70,22 +68,26 @@ int main(int argc, char *argv[]) {
Vector b(blockdim);
for(size_t j=0; j<blockdim; ++j)
b(j) = rg();
blockGfgs[trial].push_back(JacobianFactor::shared_ptr(new JacobianFactor(key, A, b, noise)));
blockGfgs[trial].push_back(boost::make_shared<JacobianFactor>(key, A, b, noise));
}
}
blockbuild = timer.elapsed();
gttoc_(blockbuild);
tictoc_getNode(blockbuildNode, blockbuild);
blockbuild = blockbuildNode->secs();
cout << blockbuild << " s" << endl;
// Solve GFG's
cout << "Solving blockwise Gaussian factor graphs... ";
cout.flush();
timer.restart();
gttic_(blocksolve);
for(size_t trial=0; trial<nTrials; ++trial) {
// cout << "Trial " << trial << endl;
GaussianBayesNet::shared_ptr gbn(GaussianEliminationTree::Create(blockGfgs[trial])->eliminate(&EliminateQR));
VectorValues soln(optimize(*gbn));
GaussianBayesNet::shared_ptr gbn = blockGfgs[trial].eliminateSequential();
VectorValues soln = gbn->optimize();
}
blocksolve = timer.elapsed();
gttoc_(blocksolve);
tictoc_getNode(blocksolveNode, blocksolve);
blocksolve = blocksolveNode->secs();
cout << blocksolve << " s" << endl;
}
@ -97,8 +99,7 @@ int main(int argc, char *argv[]) {
// Build GFG's
cout << "Building combined-factor Gaussian factor graphs... ";
cout.flush();
boost::timer timer;
timer.restart();
gttic_(combbuild);
vector<GaussianFactorGraph> combGfgs;
for(size_t trial=0; trial<nTrials; ++trial) {
combGfgs.push_back(GaussianFactorGraph());
@ -115,21 +116,25 @@ int main(int argc, char *argv[]) {
for(size_t j=0; j<blockdim; ++j)
bcomb(blockdim*i+j) = rg();
}
combGfgs[trial].push_back(JacobianFactor::shared_ptr(new JacobianFactor(key, Acomb, bcomb,
noiseModel::Isotropic::Sigma(blockdim*nBlocks, 1.0))));
combGfgs[trial].push_back(boost::make_shared<JacobianFactor>(key, Acomb, bcomb,
noiseModel::Isotropic::Sigma(blockdim*nBlocks, 1.0)));
}
combbuild = timer.elapsed();
gttoc(combbuild);
tictoc_getNode(combbuildNode, combbuild);
combbuild = combbuildNode->secs();
cout << combbuild << " s" << endl;
// Solve GFG's
cout << "Solving combined-factor Gaussian factor graphs... ";
cout.flush();
timer.restart();
gttic_(combsolve);
for(size_t trial=0; trial<nTrials; ++trial) {
GaussianBayesNet::shared_ptr gbn(GaussianEliminationTree::Create(combGfgs[trial])->eliminate(&EliminateQR));
VectorValues soln(optimize(*gbn));
GaussianBayesNet::shared_ptr gbn = combGfgs[trial].eliminateSequential();
VectorValues soln = gbn->optimize();
}
combsolve = timer.elapsed();
gttoc_(combsolve);
tictoc_getNode(combsolveNode, combsolve);
combsolve = combsolveNode->secs();
cout << combsolve << " s" << endl;
}

View File

@ -22,7 +22,7 @@
using namespace std;
#include <boost/tuple/tuple.hpp>
#include <boost/assign/std/list.hpp> // for operator += in Ordering
#include <boost/assign/list_of.hpp>
#include <gtsam/base/Matrix.h>
#include <gtsam/linear/JacobianFactor.h>
@ -33,7 +33,7 @@ using namespace std;
using namespace gtsam;
using namespace boost::assign;
static const Index _x1_=1, _x2_=2, _l1_=3;
static const Key _x1_=1, _x2_=2, _l1_=3;
/*
* Alex's Machine
@ -53,7 +53,7 @@ static const Index _x1_=1, _x2_=2, _l1_=3;
int main()
{
// create a linear factor
Matrix Ax2 = (Mat(8, 2) <<
Matrix Ax2 = (Matrix(8, 2) <<
// x2
-5., 0.,
+0.,-5.,
@ -65,7 +65,7 @@ int main()
+0.,10.
);
Matrix Al1 = (Mat(8, 10) <<
Matrix Al1 = (Matrix(8, 10) <<
// l1
5., 0.,1.,2.,3.,4.,5.,6.,7.,8.,
0., 5.,1.,2.,3.,4.,5.,6.,7.,8.,
@ -77,7 +77,7 @@ int main()
0., 0.,1.,2.,3.,4.,5.,6.,7.,8.
);
Matrix Ax1 = (Mat(8, 2) <<
Matrix Ax1 = (Matrix(8, 2) <<
// x1
0.00, 0.,1.,2.,3.,4.,5.,6.,7.,8.,
0.00, 0.,1.,2.,3.,4.,5.,6.,7.,8.,
@ -108,7 +108,8 @@ int main()
JacobianFactor::shared_ptr factor;
for(int i = 0; i < n; i++)
conditional = JacobianFactor(combined).eliminateFirst();
boost::tie(conditional, factor) =
JacobianFactor(combined).eliminate(Ordering(boost::assign::list_of(_x2_)));
long timeLog2 = clock();
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;

View File

@ -29,10 +29,10 @@ using namespace boost::assign;
/* ************************************************************************* */
// Create a Kalman smoother for t=1:T and optimize
double timeKalmanSmoother(int T) {
pair<GaussianFactorGraph,Ordering> smoother_ordering = createSmoother(T);
GaussianFactorGraph& smoother(smoother_ordering.first);
GaussianFactorGraph smoother = createSmoother(T);
clock_t start = clock();
GaussianSequentialSolver(smoother).optimize();
// Keys will come out sorted since keys() returns a set
smoother.optimize(Ordering(smoother.keys()));
clock_t end = clock ();
double dif = (double)(end - start) / CLOCKS_PER_SEC;
return dif;
@ -40,12 +40,10 @@ double timeKalmanSmoother(int T) {
/* ************************************************************************* */
// Create a planar factor graph and optimize
// todo: use COLAMD ordering again (removed when linear baked-in ordering added)
double timePlanarSmoother(int N, bool old = true) {
boost::tuple<GaussianFactorGraph, VectorValues> pg = planarGraph(N);
GaussianFactorGraph& fg(pg.get<0>());
GaussianFactorGraph fg = planarGraph(N).get<0>();
clock_t start = clock();
GaussianSequentialSolver(fg).optimize();
fg.optimize();
clock_t end = clock ();
double dif = (double)(end - start) / CLOCKS_PER_SEC;
return dif;
@ -53,12 +51,10 @@ double timePlanarSmoother(int N, bool old = true) {
/* ************************************************************************* */
// Create a planar factor graph and eliminate
// todo: use COLAMD ordering again (removed when linear baked-in ordering added)
double timePlanarSmootherEliminate(int N, bool old = true) {
boost::tuple<GaussianFactorGraph, VectorValues> pg = planarGraph(N);
GaussianFactorGraph& fg(pg.get<0>());
GaussianFactorGraph fg = planarGraph(N).get<0>();
clock_t start = clock();
GaussianSequentialSolver(fg).eliminate();
fg.eliminateMultifrontal();
clock_t end = clock ();
double dif = (double)(end - start) / CLOCKS_PER_SEC;
return dif;

View File

@ -189,7 +189,7 @@ double timeColumn(size_t reps) {
*/
double timeHouseholder(size_t reps) {
// create a matrix
Matrix Abase = Mat(4, 7) <<
Matrix Abase = (Matrix(4, 7) <<
-5, 0, 5, 0, 0, 0, -1,
00, -5, 0, 5, 0, 0, 1.5,
10, 0, 0, 0,-10, 0, 2,

View File

@ -28,7 +28,7 @@ int main()
{
int n = 1000000;
const Pose3 pose1((Matrix)(Mat(3,3) <<
const Pose3 pose1((Matrix)(Matrix(3,3) <<
1., 0., 0.,
0.,-1., 0.,
0., 0.,-1.
@ -53,6 +53,10 @@ int main()
// After Cal3DS2 fix: 0.12231 musecs/call
// Cal3Bundler: 0.12000 musecs/call
// Cal3Bundler fix: 0.14637 musecs/call
// June 24 2014, Macbook Pro 2.3GHz Core i7
// GTSAM 3.1: 0.04295 musecs/call
// After project fix: 0.04193 musecs/call
{
long timeLog = clock();
for(int i = 0; i < n; i++)
@ -70,6 +74,9 @@ int main()
// After Cal3DS2 fix: 3.2857 musecs/call
// Cal3Bundler: 2.6556 musecs/call
// Cal3Bundler fix: 2.1613 musecs/call
// June 24 2014, Macbook Pro 2.3GHz Core i7
// GTSAM 3.1: 0.2322 musecs/call
// After project fix: 0.2094 musecs/call
{
Matrix Dpose, Dpoint;
long timeLog = clock();
@ -88,6 +95,9 @@ int main()
// After Cal3DS2 fix: 3.4483 musecs/call
// Cal3Bundler: 2.5112 musecs/call
// Cal3Bundler fix: 2.0946 musecs/call
// June 24 2014, Macbook Pro 2.3GHz Core i7
// GTSAM 3.1: 0.2294 musecs/call
// After project fix: 0.2093 musecs/call
{
Matrix Dpose, Dpoint, Dcal;
long timeLog = clock();

View File

@ -58,7 +58,7 @@ Pose2 Pose2betweenOptimized(const Pose2& r1, const Pose2& r2,
if (H1) {
double dt1 = -s2 * x + c2 * y;
double dt2 = -c2 * x - s2 * y;
*H1 = (Mat(3,3) <<
*H1 = (Matrix(3,3) <<
-c, -s, dt1,
s, -c, dt2,
0.0, 0.0,-1.0);

View File

@ -37,8 +37,8 @@ int main()
double norm=sqrt(1.0+16.0+4.0);
double x=1.0/norm, y=4.0/norm, z=2.0/norm;
Vector v = (Vec(6) << x, y, z, 0.1, 0.2, -0.1);
Pose3 T = Pose3::Expmap((Vec(6) << 0.1, 0.1, 0.2, 0.1, 0.4, 0.2)), T2 = T.retract(v);
Vector v = (Vector(6) << x, y, z, 0.1, 0.2, -0.1);
Pose3 T = Pose3::Expmap((Vector(6) << 0.1, 0.1, 0.2, 0.1, 0.4, 0.2)), T2 = T.retract(v);
Matrix H1,H2;
TEST(retract, T.retract(v))

View File

@ -27,7 +27,7 @@ int main()
{
int n = 100000;
const Pose3 pose1((Matrix)(Mat(3,3) <<
const Pose3 pose1((Matrix)(Matrix(3,3) <<
1., 0., 0.,
0.,-1., 0.,
0., 0.,-1.