168 lines
4.9 KiB
C++
168 lines
4.9 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* @file Unit3.h
|
|
* @date Feb 02, 2011
|
|
* @author Can Erdogan
|
|
* @author Frank Dellaert
|
|
* @author Alex Trevor
|
|
* @brief The Unit3 class - basically a point on a unit sphere
|
|
*/
|
|
|
|
#include <gtsam/geometry/Unit3.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <boost/random/mersenne_twister.hpp>
|
|
#include <boost/random/uniform_on_sphere.hpp>
|
|
#include <boost/random/variate_generator.hpp>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
Unit3 Unit3::FromPoint3(const Point3& point, boost::optional<Matrix&> H) {
|
|
Unit3 direction(point);
|
|
if (H) {
|
|
// 3*3 Derivative of representation with respect to point is 3*3:
|
|
Matrix D_p_point;
|
|
point.normalize(D_p_point); // TODO, this calculates norm a second time :-(
|
|
// Calculate the 2*3 Jacobian
|
|
H->resize(2, 3);
|
|
*H << direction.basis().transpose() * D_p_point;
|
|
}
|
|
return direction;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Unit3 Unit3::Random(boost::mt19937 & rng) {
|
|
// TODO allow any engine without including all of boost :-(
|
|
boost::uniform_on_sphere<double> randomDirection(3);
|
|
// This variate_generator object is required for versions of boost somewhere
|
|
// around 1.46, instead of drawing directly using boost::uniform_on_sphere(rng).
|
|
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> >
|
|
generator(rng, randomDirection);
|
|
vector<double> d = generator();
|
|
Unit3 result;
|
|
result.p_ = Point3(d[0], d[1], d[2]);
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
const Matrix& Unit3::basis() const {
|
|
|
|
// Return cached version if exists
|
|
if (B_.rows() == 3)
|
|
return B_;
|
|
|
|
// Get the axis of rotation with the minimum projected length of the point
|
|
Point3 axis;
|
|
double mx = fabs(p_.x()), my = fabs(p_.y()), mz = fabs(p_.z());
|
|
if ((mx <= my) && (mx <= mz))
|
|
axis = Point3(1.0, 0.0, 0.0);
|
|
else if ((my <= mx) && (my <= mz))
|
|
axis = Point3(0.0, 1.0, 0.0);
|
|
else if ((mz <= mx) && (mz <= my))
|
|
axis = Point3(0.0, 0.0, 1.0);
|
|
else
|
|
assert(false);
|
|
|
|
// Create the two basis vectors
|
|
Point3 b1 = p_.cross(axis);
|
|
b1 = b1 / b1.norm();
|
|
Point3 b2 = p_.cross(b1);
|
|
b2 = b2 / b2.norm();
|
|
|
|
// Create the basis matrix
|
|
B_ = Matrix(3, 2);
|
|
B_ << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
|
return B_;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/// The print fuction
|
|
void Unit3::print(const std::string& s) const {
|
|
cout << s << ":" << p_ << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Unit3::skew() const {
|
|
return skewSymmetric(p_.x(), p_.y(), p_.z());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector Unit3::error(const Unit3& q, boost::optional<Matrix&> H) const {
|
|
Matrix Bt = basis().transpose();
|
|
Vector xi = Bt * q.p_.vector();
|
|
if (H)
|
|
*H = Bt * q.basis();
|
|
return xi;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double Unit3::distance(const Unit3& q, boost::optional<Matrix&> H) const {
|
|
Vector xi = error(q, H);
|
|
double theta = xi.norm();
|
|
if (H)
|
|
*H = (xi.transpose() / theta) * (*H);
|
|
return theta;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Unit3 Unit3::retract(const Vector& v) const {
|
|
|
|
// Get the vector form of the point and the basis matrix
|
|
Vector p = Point3::Logmap(p_);
|
|
Matrix B = basis();
|
|
|
|
// Compute the 3D xi_hat vector
|
|
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
|
|
|
|
double xi_hat_norm = xi_hat.norm();
|
|
|
|
// Avoid nan
|
|
if (xi_hat_norm == 0.0) {
|
|
if (v.norm() == 0.0)
|
|
return Unit3(point3());
|
|
else
|
|
return Unit3(-point3());
|
|
}
|
|
|
|
Vector exp_p_xi_hat = cos(xi_hat_norm) * p
|
|
+ sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
|
|
return Unit3(exp_p_xi_hat);
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector Unit3::localCoordinates(const Unit3& y) const {
|
|
|
|
Vector p = Point3::Logmap(p_);
|
|
Vector q = Point3::Logmap(y.p_);
|
|
double dot = p.dot(q);
|
|
|
|
// Check for special cases
|
|
if (std::abs(dot - 1.0) < 1e-16)
|
|
return (Vector(2) << 0, 0);
|
|
else if (std::abs(dot + 1.0) < 1e-16)
|
|
return (Vector(2) << M_PI, 0);
|
|
else {
|
|
// no special case
|
|
double theta = acos(dot);
|
|
Vector result_hat = (theta / sin(theta)) * (q - p * dot);
|
|
return basis().transpose() * result_hat;
|
|
}
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
}
|