Merge branch 'develop' into feature/cameraTemplateForAllSmartFactors

# Conflicts:
#	gtsam/geometry/CameraSet.h
release/4.3a0
lcarlone 2021-08-28 20:09:24 -04:00
parent 7d80f52b12
commit e9641ba26b
32 changed files with 4132 additions and 690 deletions

View File

@ -22,18 +22,19 @@ if (GTSAM_BUILD_DOCS)
# GTSAM core subfolders
set(gtsam_doc_subdirs
gtsam/base
gtsam/discrete
gtsam/geometry
gtsam/inference
gtsam/linear
gtsam/navigation
gtsam/nonlinear
gtsam/sam
gtsam/sfm
gtsam/slam
gtsam/smart
gtsam/symbolic
gtsam/base
gtsam/basis
gtsam/discrete
gtsam/geometry
gtsam/inference
gtsam/linear
gtsam/navigation
gtsam/nonlinear
gtsam/sam
gtsam/sfm
gtsam/slam
gtsam/smart
gtsam/symbolic
gtsam
)

View File

@ -5,6 +5,7 @@ project(gtsam LANGUAGES CXX)
# The following variable is the master list of subdirs to add
set (gtsam_subdirs
base
basis
geometry
inference
symbolic

View File

@ -320,28 +320,28 @@ T expm(const Vector& x, int K=7) {
}
/**
* Linear interpolation between X and Y by coefficient t (typically t \in [0,1],
* but can also be used to extrapolate before pose X or after pose Y), with optional jacobians.
* Linear interpolation between X and Y by coefficient t. Typically t \in [0,1],
* but can also be used to extrapolate before pose X or after pose Y.
*/
template <typename T>
T interpolate(const T& X, const T& Y, double t,
typename MakeOptionalJacobian<T, T>::type Hx = boost::none,
typename MakeOptionalJacobian<T, T>::type Hy = boost::none) {
if (Hx || Hy) {
typename traits<T>::TangentVector log_Xinv_Y;
typename MakeJacobian<T, T>::type between_H_x, log_H, exp_H, compose_H_x;
const T between =
traits<T>::Between(X, Y, between_H_x); // between_H_y = identity
typename traits<T>::TangentVector delta = traits<T>::Logmap(between, log_H);
const T Delta = traits<T>::Expmap(t * delta, exp_H);
const T result = traits<T>::Compose(
X, Delta, compose_H_x); // compose_H_xinv_y = identity
T Xinv_Y = traits<T>::Between(X, Y, between_H_x); // between_H_y = identity
log_Xinv_Y = traits<T>::Logmap(Xinv_Y, log_H);
Xinv_Y = traits<T>::Expmap(t * log_Xinv_Y, exp_H);
Xinv_Y = traits<T>::Compose(X, Xinv_Y, compose_H_x); // compose_H_xinv_y = identity
if(Hx) *Hx = compose_H_x + t * exp_H * log_H * between_H_x;
if(Hy) *Hy = t * exp_H * log_H;
return Xinv_Y;
if (Hx) *Hx = compose_H_x + t * exp_H * log_H * between_H_x;
if (Hy) *Hy = t * exp_H * log_H;
return result;
}
return traits<T>::Compose(X, traits<T>::Expmap(t * traits<T>::Logmap(traits<T>::Between(X, Y))));
return traits<T>::Compose(
X, traits<T>::Expmap(t * traits<T>::Logmap(traits<T>::Between(X, Y))));
}
/**

507
gtsam/basis/Basis.h Normal file
View File

@ -0,0 +1,507 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Basis.h
* @brief Compute an interpolating basis
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/basis/ParameterMatrix.h>
#include <iostream>
/**
* This file supports creating continuous functions `f(x;p)` as a linear
* combination of `basis functions` such as the Fourier basis on SO(2) or a set
* of Chebyshev polynomials on [-1,1].
*
* In the expression `f(x;p)` the variable `x` is
* the continuous argument at which the function is evaluated, and `p` are
* the parameters which are coefficients of the different basis functions,
* e.g. p = [4; 3; 2] => 4 + 3x + 2x^2 for a polynomial.
* However, different parameterizations are also possible.
* The `Basis` class below defines a number of functors that can be used to
* evaluate `f(x;p)` at a given `x`, and these functors also calculate
* the Jacobian of `f(x;p)` with respect to the parameters `p`.
* This is actually the most important calculation, as it will allow GTSAM
* to optimize over the parameters `p`.
* This functionality is implemented using the `CRTP` or "Curiously recurring
* template pattern" C++ idiom, which is a meta-programming technique in which
* the derived class is passed as a template argument to `Basis<DERIVED>`.
* The DERIVED class is assumed to satisfy a C++ concept,
* i.e., we expect it to define the following types and methods:
- type `Parameters`: the parameters `p` in f(x;p)
- `CalculateWeights(size_t N, double x, double a=default, double b=default)`
- `DerivativeWeights(size_t N, double x, double a=default, double b=default)`
where `Weights` is an N*1 row vector which defines the basis values for the
polynomial at the specified point `x`.
E.g. A Fourier series would give the following:
- `CalculateWeights` -> For N=5, the values for the bases:
[1, cos(x), sin(x), cos(2x), sin(2x)]
- `DerivativeWeights` -> For N=5, these are:
[0, -sin(x), cos(x), -2sin(2x), 2cos(x)]
Note that for a pseudo-spectral basis (as in Chebyshev2), the weights are
instead the values for the Barycentric interpolation formula, since the values
at the polynomial points (e.g. Chebyshev points) define the bases.
*/
namespace gtsam {
using Weights = Eigen::Matrix<double, 1, -1>; /* 1xN vector */
/**
* @brief Function for computing the kronecker product of the 1*N Weight vector
* `w` with the MxM identity matrix `I` efficiently.
* The main reason for this is so we don't need to use Eigen's Unsupported
* library.
*
* @tparam M Size of the identity matrix.
* @param w The weights of the polynomial.
* @return Mx(M*N) kronecker product [w(0)*I, w(1)*I, ..., w(N-1)*I]
*/
template <size_t M>
Matrix kroneckerProductIdentity(const Weights& w) {
Matrix result(M, w.cols() * M);
result.setZero();
for (int i = 0; i < w.cols(); i++) {
result.block(0, i * M, M, M).diagonal().array() = w(i);
}
return result;
}
/// CRTP Base class for function bases
template <typename DERIVED>
class GTSAM_EXPORT Basis {
public:
/**
* Calculate weights for all x in vector X.
* Returns M*N matrix where M is the size of the vector X,
* and N is the number of basis functions.
*/
static Matrix WeightMatrix(size_t N, const Vector& X) {
Matrix W(X.size(), N);
for (int i = 0; i < X.size(); i++)
W.row(i) = DERIVED::CalculateWeights(N, X(i));
return W;
}
/**
* @brief Calculate weights for all x in vector X, with interval [a,b].
*
* @param N The number of basis functions.
* @param X The vector for which to compute the weights.
* @param a The lower bound for the interval range.
* @param b The upper bound for the interval range.
* @return Returns M*N matrix where M is the size of the vector X.
*/
static Matrix WeightMatrix(size_t N, const Vector& X, double a, double b) {
Matrix W(X.size(), N);
for (int i = 0; i < X.size(); i++)
W.row(i) = DERIVED::CalculateWeights(N, X(i), a, b);
return W;
}
/**
* An instance of an EvaluationFunctor calculates f(x;p) at a given `x`,
* applied to Parameters `p`.
* This functor is used to evaluate a parameterized function at a given scalar
* value x. When given a specific N*1 vector of Parameters, returns the scalar
* value of the function at x, possibly with Jacobians wrpt the parameters.
*/
class EvaluationFunctor {
protected:
Weights weights_;
public:
/// For serialization
EvaluationFunctor() {}
/// Constructor with interval [a,b]
EvaluationFunctor(size_t N, double x)
: weights_(DERIVED::CalculateWeights(N, x)) {}
/// Constructor with interval [a,b]
EvaluationFunctor(size_t N, double x, double a, double b)
: weights_(DERIVED::CalculateWeights(N, x, a, b)) {}
/// Regular 1D evaluation
double apply(const typename DERIVED::Parameters& p,
OptionalJacobian<-1, -1> H = boost::none) const {
if (H) *H = weights_;
return (weights_ * p)(0);
}
/// c++ sugar
double operator()(const typename DERIVED::Parameters& p,
OptionalJacobian<-1, -1> H = boost::none) const {
return apply(p, H); // might call apply in derived
}
void print(const std::string& s = "") const {
std::cout << s << (s != "" ? " " : "") << weights_ << std::endl;
}
};
/**
* VectorEvaluationFunctor at a given x, applied to ParameterMatrix<M>.
* This functor is used to evaluate a parameterized function at a given scalar
* value x. When given a specific M*N parameters, returns an M-vector the M
* corresponding functions at x, possibly with Jacobians wrpt the parameters.
*/
template <int M>
class VectorEvaluationFunctor : protected EvaluationFunctor {
protected:
using VectorM = Eigen::Matrix<double, M, 1>;
using Jacobian = Eigen::Matrix<double, /*MxMN*/ M, -1>;
Jacobian H_;
/**
* Calculate the `M*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H =[ w(0) 0 w(1) 0 w(2) 0
* 0 w(0) 0 w(1) 0 w(2) ]
* i.e., the Kronecker product of weights_ with the MxM identity matrix.
*/
void calculateJacobian() {
H_ = kroneckerProductIdentity<M>(this->weights_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// For serialization
VectorEvaluationFunctor() {}
/// Default Constructor
VectorEvaluationFunctor(size_t N, double x) : EvaluationFunctor(N, x) {
calculateJacobian();
}
/// Constructor, with interval [a,b]
VectorEvaluationFunctor(size_t N, double x, double a, double b)
: EvaluationFunctor(N, x, a, b) {
calculateJacobian();
}
/// M-dimensional evaluation
VectorM apply(const ParameterMatrix<M>& P,
OptionalJacobian</*MxN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.matrix() * this->weights_.transpose();
}
/// c++ sugar
VectorM operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*MxN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
/**
* Given a M*N Matrix of M-vectors at N polynomial points, an instance of
* VectorComponentFunctor computes the N-vector value for a specific row
* component of the M-vectors at all the polynomial points.
*
* This component is specified by the row index i, with 0<i<M.
*/
template <int M>
class VectorComponentFunctor : public EvaluationFunctor {
protected:
using Jacobian = Eigen::Matrix<double, /*1xMN*/ 1, -1>;
size_t rowIndex_;
Jacobian H_;
/*
* Calculate the `1*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H=[w(0) 0 w(1) 0 w(2) 0] for rowIndex==0
* H=[0 w(0) 0 w(1) 0 w(2)] for rowIndex==1
* i.e., one row of the Kronecker product of weights_ with the
* MxM identity matrix. See also VectorEvaluationFunctor.
*/
void calculateJacobian(size_t N) {
H_.setZero(1, M * N);
for (int j = 0; j < EvaluationFunctor::weights_.size(); j++)
H_(0, rowIndex_ + j * M) = EvaluationFunctor::weights_(j);
}
public:
/// For serialization
VectorComponentFunctor() {}
/// Construct with row index
VectorComponentFunctor(size_t N, size_t i, double x)
: EvaluationFunctor(N, x), rowIndex_(i) {
calculateJacobian(N);
}
/// Construct with row index and interval
VectorComponentFunctor(size_t N, size_t i, double x, double a, double b)
: EvaluationFunctor(N, x, a, b), rowIndex_(i) {
calculateJacobian(N);
}
/// Calculate component of component rowIndex_ of P
double apply(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.row(rowIndex_) * EvaluationFunctor::weights_.transpose();
}
/// c++ sugar
double operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
/**
* Manifold EvaluationFunctor at a given x, applied to ParameterMatrix<M>.
* This functor is used to evaluate a parameterized function at a given scalar
* value x. When given a specific M*N parameters, returns an M-vector the M
* corresponding functions at x, possibly with Jacobians wrpt the parameters.
*
* The difference with the VectorEvaluationFunctor is that after computing the
* M*1 vector xi=F(x;P), with x a scalar and P the M*N parameter vector, we
* also retract xi back to the T manifold.
* For example, if T==Rot3, then we first compute a 3-vector xi using x and P,
* and then map that 3-vector xi back to the Rot3 manifold, yielding a valid
* 3D rotation.
*/
template <class T>
class ManifoldEvaluationFunctor
: public VectorEvaluationFunctor<traits<T>::dimension> {
enum { M = traits<T>::dimension };
using Base = VectorEvaluationFunctor<M>;
public:
/// For serialization
ManifoldEvaluationFunctor() {}
/// Default Constructor
ManifoldEvaluationFunctor(size_t N, double x) : Base(N, x) {}
/// Constructor, with interval [a,b]
ManifoldEvaluationFunctor(size_t N, double x, double a, double b)
: Base(N, x, a, b) {}
/// Manifold evaluation
T apply(const ParameterMatrix<M>& P,
OptionalJacobian</*MxMN*/ -1, -1> H = boost::none) const {
// Interpolate the M-dimensional vector to yield a vector in tangent space
Eigen::Matrix<double, M, 1> xi = Base::operator()(P, H);
// Now call retract with this M-vector, possibly with derivatives
Eigen::Matrix<double, M, M> D_result_xi;
T result = T::ChartAtOrigin::Retract(xi, H ? &D_result_xi : 0);
// Finally, if derivatives are asked, apply chain rule where H is Mx(M*N)
// derivative of interpolation and D_result_xi is MxM derivative of
// retract.
if (H) *H = D_result_xi * (*H);
// and return a T
return result;
}
/// c++ sugar
T operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*MxN*/ -1, -1> H = boost::none) const {
return apply(P, H); // might call apply in derived
}
};
/// Base class for functors below that calculate derivative weights
class DerivativeFunctorBase {
protected:
Weights weights_;
public:
/// For serialization
DerivativeFunctorBase() {}
DerivativeFunctorBase(size_t N, double x)
: weights_(DERIVED::DerivativeWeights(N, x)) {}
DerivativeFunctorBase(size_t N, double x, double a, double b)
: weights_(DERIVED::DerivativeWeights(N, x, a, b)) {}
void print(const std::string& s = "") const {
std::cout << s << (s != "" ? " " : "") << weights_ << std::endl;
}
};
/**
* An instance of a DerivativeFunctor calculates f'(x;p) at a given `x`,
* applied to Parameters `p`.
* When given a scalar value x and a specific N*1 vector of Parameters,
* this functor returns the scalar derivative value of the function at x,
* possibly with Jacobians wrpt the parameters.
*/
class DerivativeFunctor : protected DerivativeFunctorBase {
public:
/// For serialization
DerivativeFunctor() {}
DerivativeFunctor(size_t N, double x) : DerivativeFunctorBase(N, x) {}
DerivativeFunctor(size_t N, double x, double a, double b)
: DerivativeFunctorBase(N, x, a, b) {}
double apply(const typename DERIVED::Parameters& p,
OptionalJacobian</*1xN*/ -1, -1> H = boost::none) const {
if (H) *H = this->weights_;
return (this->weights_ * p)(0);
}
/// c++ sugar
double operator()(const typename DERIVED::Parameters& p,
OptionalJacobian</*1xN*/ -1, -1> H = boost::none) const {
return apply(p, H); // might call apply in derived
}
};
/**
* VectorDerivativeFunctor at a given x, applied to ParameterMatrix<M>.
*
* This functor is used to evaluate the derivatives of a parameterized
* function at a given scalar value x. When given a specific M*N parameters,
* returns an M-vector the M corresponding function derivatives at x, possibly
* with Jacobians wrpt the parameters.
*/
template <int M>
class VectorDerivativeFunctor : protected DerivativeFunctorBase {
protected:
using VectorM = Eigen::Matrix<double, M, 1>;
using Jacobian = Eigen::Matrix<double, /*MxMN*/ M, -1>;
Jacobian H_;
/**
* Calculate the `M*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H =[ w(0) 0 w(1) 0 w(2) 0
* 0 w(0) 0 w(1) 0 w(2) ]
* i.e., the Kronecker product of weights_ with the MxM identity matrix.
*/
void calculateJacobian() {
H_ = kroneckerProductIdentity<M>(this->weights_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// For serialization
VectorDerivativeFunctor() {}
/// Default Constructor
VectorDerivativeFunctor(size_t N, double x) : DerivativeFunctorBase(N, x) {
calculateJacobian();
}
/// Constructor, with optional interval [a,b]
VectorDerivativeFunctor(size_t N, double x, double a, double b)
: DerivativeFunctorBase(N, x, a, b) {
calculateJacobian();
}
VectorM apply(const ParameterMatrix<M>& P,
OptionalJacobian</*MxMN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.matrix() * this->weights_.transpose();
}
/// c++ sugar
VectorM operator()(
const ParameterMatrix<M>& P,
OptionalJacobian</*MxMN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
/**
* Given a M*N Matrix of M-vectors at N polynomial points, an instance of
* ComponentDerivativeFunctor computes the N-vector derivative for a specific
* row component of the M-vectors at all the polynomial points.
*
* This component is specified by the row index i, with 0<i<M.
*/
template <int M>
class ComponentDerivativeFunctor : protected DerivativeFunctorBase {
protected:
using Jacobian = Eigen::Matrix<double, /*1xMN*/ 1, -1>;
size_t rowIndex_;
Jacobian H_;
/*
* Calculate the `1*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H=[w(0) 0 w(1) 0 w(2) 0] for rowIndex==0
* H=[0 w(0) 0 w(1) 0 w(2)] for rowIndex==1
* i.e., one row of the Kronecker product of weights_ with the
* MxM identity matrix. See also VectorDerivativeFunctor.
*/
void calculateJacobian(size_t N) {
H_.setZero(1, M * N);
for (int j = 0; j < this->weights_.size(); j++)
H_(0, rowIndex_ + j * M) = this->weights_(j);
}
public:
/// For serialization
ComponentDerivativeFunctor() {}
/// Construct with row index
ComponentDerivativeFunctor(size_t N, size_t i, double x)
: DerivativeFunctorBase(N, x), rowIndex_(i) {
calculateJacobian(N);
}
/// Construct with row index and interval
ComponentDerivativeFunctor(size_t N, size_t i, double x, double a, double b)
: DerivativeFunctorBase(N, x, a, b), rowIndex_(i) {
calculateJacobian(N);
}
/// Calculate derivative of component rowIndex_ of F
double apply(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.row(rowIndex_) * this->weights_.transpose();
}
/// c++ sugar
double operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
// Vector version for MATLAB :-(
static double Derivative(double x, const Vector& p, //
OptionalJacobian</*1xN*/ -1, -1> H = boost::none) {
return DerivativeFunctor(x)(p.transpose(), H);
}
};
} // namespace gtsam

424
gtsam/basis/BasisFactors.h Normal file
View File

@ -0,0 +1,424 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file BasisFactors.h
* @brief Factor definitions for various Basis functors.
* @author Varun Agrawal
* @date July 4, 2020
**/
#pragma once
#include <gtsam/basis/Basis.h>
#include <gtsam/nonlinear/FunctorizedFactor.h>
namespace gtsam {
/**
* @brief Factor for enforcing the scalar value of the polynomial BASIS
* representation at `x` is the same as the measurement `z` when using a
* pseudo-spectral parameterization.
*
* @tparam BASIS The basis class to use e.g. Chebyshev2
*/
template <class BASIS>
class GTSAM_EXPORT EvaluationFactor : public FunctorizedFactor<double, Vector> {
private:
using Base = FunctorizedFactor<double, Vector>;
public:
EvaluationFactor() {}
/**
* @brief Construct a new EvaluationFactor object
*
* @param key Symbol for value to optimize.
* @param z The measurement value.
* @param model Noise model
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the polynomial.
*/
EvaluationFactor(Key key, const double &z, const SharedNoiseModel &model,
const size_t N, double x)
: Base(key, z, model, typename BASIS::EvaluationFunctor(N, x)) {}
/**
* @brief Construct a new EvaluationFactor object
*
* @param key Symbol for value to optimize.
* @param z The measurement value.
* @param model Noise model
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the polynomial.
* @param a Lower bound for the polynomial.
* @param b Upper bound for the polynomial.
*/
EvaluationFactor(Key key, const double &z, const SharedNoiseModel &model,
const size_t N, double x, double a, double b)
: Base(key, z, model, typename BASIS::EvaluationFunctor(N, x, a, b)) {}
virtual ~EvaluationFactor() {}
};
/**
* Unary factor for enforcing BASIS polynomial evaluation on a ParameterMatrix
* of size (M, N) is equal to a vector-valued measurement at the same point,
when
* using a pseudo-spectral parameterization.
*
* This factors tries to enforce the basis function evaluation `f(x;p)` to take
* on the value `z` at location `x`, providing a gradient on the parameters p.
* In a probabilistic estimation context, `z` is known as a measurement, and the
* parameterized basis function can be seen as a
* measurement prediction function.
*
* @param BASIS: The basis class to use e.g. Chebyshev2
* @param M: Size of the evaluated state vector.
*/
template <class BASIS, int M>
class GTSAM_EXPORT VectorEvaluationFactor
: public FunctorizedFactor<Vector, ParameterMatrix<M>> {
private:
using Base = FunctorizedFactor<Vector, ParameterMatrix<M>>;
public:
VectorEvaluationFactor() {}
/**
* @brief Construct a new VectorEvaluationFactor object.
*
* @param key The key to the ParameterMatrix object used to represent the
* polynomial.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the basis polynomial.
*/
VectorEvaluationFactor(Key key, const Vector &z,
const SharedNoiseModel &model, const size_t N,
double x)
: Base(key, z, model,
typename BASIS::template VectorEvaluationFunctor<M>(N, x)) {}
/**
* @brief Construct a new VectorEvaluationFactor object.
*
* @param key The key to the ParameterMatrix object used to represent the
* polynomial.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the basis polynomial.
* @param a Lower bound for the polynomial.
* @param b Upper bound for the polynomial.
*/
VectorEvaluationFactor(Key key, const Vector &z,
const SharedNoiseModel &model, const size_t N,
double x, double a, double b)
: Base(key, z, model,
typename BASIS::template VectorEvaluationFunctor<M>(N, x, a, b)) {}
virtual ~VectorEvaluationFactor() {}
};
/**
* Unary factor for enforcing BASIS polynomial evaluation on a ParameterMatrix
* of size (P, N) is equal to specified measurement at the same point, when
* using a pseudo-spectral parameterization.
*
* This factor is similar to `VectorEvaluationFactor` with the key difference
* being that it only enforces the constraint for a single scalar in the vector,
* indexed by `i`.
*
* @param BASIS: The basis class to use e.g. Chebyshev2
* @param P: Size of the fixed-size vector.
*
* Example:
* VectorComponentFactor<BASIS, P> controlPrior(key, measured, model,
* N, i, t, a, b);
* where N is the degree and i is the component index.
*/
template <class BASIS, size_t P>
class GTSAM_EXPORT VectorComponentFactor
: public FunctorizedFactor<double, ParameterMatrix<P>> {
private:
using Base = FunctorizedFactor<double, ParameterMatrix<P>>;
public:
VectorComponentFactor() {}
/**
* @brief Construct a new VectorComponentFactor object.
*
* @param key The key to the ParameterMatrix object used to represent the
* polynomial.
* @param z The scalar value at a specified index `i` of the full measurement
* vector.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param i The index for the evaluated vector to give us the desired scalar
* value.
* @param x The point at which to evaluate the basis polynomial.
*/
VectorComponentFactor(Key key, const double &z, const SharedNoiseModel &model,
const size_t N, size_t i, double x)
: Base(key, z, model,
typename BASIS::template VectorComponentFunctor<P>(N, i, x)) {}
/**
* @brief Construct a new VectorComponentFactor object.
*
* @param key The key to the ParameterMatrix object used to represent the
* polynomial.
* @param z The scalar value at a specified index `i` of the full measurement
* vector.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param i The index for the evaluated vector to give us the desired scalar
* value.
* @param x The point at which to evaluate 0the basis polynomial.
* @param a Lower bound for the polynomial.
* @param b Upper bound for the polynomial.
*/
VectorComponentFactor(Key key, const double &z, const SharedNoiseModel &model,
const size_t N, size_t i, double x, double a, double b)
: Base(
key, z, model,
typename BASIS::template VectorComponentFunctor<P>(N, i, x, a, b)) {
}
virtual ~VectorComponentFactor() {}
};
/**
* For a measurement value of type T i.e. `T z = g(x)`, this unary
* factor enforces that the polynomial basis, when evaluated at `x`, gives us
* the same `z`, i.e. `T z = g(x) = f(x;p)`.
*
* This is done via computations on the tangent space of the
* manifold of T.
*
* @param BASIS: The basis class to use e.g. Chebyshev2
* @param T: Object type which is synthesized by the provided functor.
*
* Example:
* ManifoldEvaluationFactor<Chebyshev2, Rot3> rotationFactor(key, measurement,
* model, N, x, a, b);
*
* where `x` is the value (e.g. timestep) at which the rotation was evaluated.
*/
template <class BASIS, typename T>
class GTSAM_EXPORT ManifoldEvaluationFactor
: public FunctorizedFactor<T, ParameterMatrix<traits<T>::dimension>> {
private:
using Base = FunctorizedFactor<T, ParameterMatrix<traits<T>::dimension>>;
public:
ManifoldEvaluationFactor() {}
/**
* @brief Construct a new ManifoldEvaluationFactor object.
*
* @param key Key for the state matrix parameterizing the function to estimate
* via the BASIS.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which the estimated function is evaluated.
*/
ManifoldEvaluationFactor(Key key, const T &z, const SharedNoiseModel &model,
const size_t N, double x)
: Base(key, z, model,
typename BASIS::template ManifoldEvaluationFunctor<T>(N, x)) {}
/**
* @brief Construct a new ManifoldEvaluationFactor object.
*
* @param key Key for the state matrix parameterizing the function to estimate
* via the BASIS.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which the estimated function is evaluated.
* @param a Lower bound for the polynomial.
* @param b Upper bound for the polynomial.
*/
ManifoldEvaluationFactor(Key key, const T &z, const SharedNoiseModel &model,
const size_t N, double x, double a, double b)
: Base(
key, z, model,
typename BASIS::template ManifoldEvaluationFunctor<T>(N, x, a, b)) {
}
virtual ~ManifoldEvaluationFactor() {}
};
/**
* A unary factor which enforces the evaluation of the derivative of a BASIS
* polynomial at a specified point`x` is equal to the scalar measurement `z`.
*
* @param BASIS: The basis class to use e.g. Chebyshev2
*/
template <class BASIS>
class GTSAM_EXPORT DerivativeFactor
: public FunctorizedFactor<double, typename BASIS::Parameters> {
private:
using Base = FunctorizedFactor<double, typename BASIS::Parameters>;
public:
DerivativeFactor() {}
/**
* @brief Construct a new DerivativeFactor object.
*
* @param key The key to the ParameterMatrix which represents the basis
* polynomial.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the basis polynomial.
*/
DerivativeFactor(Key key, const double &z, const SharedNoiseModel &model,
const size_t N, double x)
: Base(key, z, model, typename BASIS::DerivativeFunctor(N, x)) {}
/**
* @brief Construct a new DerivativeFactor object.
*
* @param key The key to the ParameterMatrix which represents the basis
* polynomial.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the basis polynomial.
* @param a Lower bound for the polynomial.
* @param b Upper bound for the polynomial.
*/
DerivativeFactor(Key key, const double &z, const SharedNoiseModel &model,
const size_t N, double x, double a, double b)
: Base(key, z, model, typename BASIS::DerivativeFunctor(N, x, a, b)) {}
virtual ~DerivativeFactor() {}
};
/**
* A unary factor which enforces the evaluation of the derivative of a BASIS
* polynomial at a specified point `x` is equal to the vector value `z`.
*
* @param BASIS: The basis class to use e.g. Chebyshev2
* @param M: Size of the evaluated state vector derivative.
*/
template <class BASIS, int M>
class GTSAM_EXPORT VectorDerivativeFactor
: public FunctorizedFactor<Vector, ParameterMatrix<M>> {
private:
using Base = FunctorizedFactor<Vector, ParameterMatrix<M>>;
using Func = typename BASIS::template VectorDerivativeFunctor<M>;
public:
VectorDerivativeFactor() {}
/**
* @brief Construct a new VectorDerivativeFactor object.
*
* @param key The key to the ParameterMatrix which represents the basis
* polynomial.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the basis polynomial.
*/
VectorDerivativeFactor(Key key, const Vector &z,
const SharedNoiseModel &model, const size_t N,
double x)
: Base(key, z, model, Func(N, x)) {}
/**
* @brief Construct a new VectorDerivativeFactor object.
*
* @param key The key to the ParameterMatrix which represents the basis
* polynomial.
* @param z The measurement value.
* @param model The noise model.
* @param N The degree of the polynomial.
* @param x The point at which to evaluate the basis polynomial.
* @param a Lower bound for the polynomial.
* @param b Upper bound for the polynomial.
*/
VectorDerivativeFactor(Key key, const Vector &z,
const SharedNoiseModel &model, const size_t N,
double x, double a, double b)
: Base(key, z, model, Func(N, x, a, b)) {}
virtual ~VectorDerivativeFactor() {}
};
/**
* A unary factor which enforces the evaluation of the derivative of a BASIS
* polynomial is equal to the scalar value at a specific index `i` of a
* vector-valued measurement `z`.
*
* @param BASIS: The basis class to use e.g. Chebyshev2
* @param P: Size of the control component derivative.
*/
template <class BASIS, int P>
class GTSAM_EXPORT ComponentDerivativeFactor
: public FunctorizedFactor<double, ParameterMatrix<P>> {
private:
using Base = FunctorizedFactor<double, ParameterMatrix<P>>;
using Func = typename BASIS::template ComponentDerivativeFunctor<P>;
public:
ComponentDerivativeFactor() {}
/**
* @brief Construct a new ComponentDerivativeFactor object.
*
* @param key The key to the ParameterMatrix which represents the basis
* polynomial.
* @param z The scalar measurement value at a specific index `i` of the full
* measurement vector.
* @param model The degree of the polynomial.
* @param N The degree of the polynomial.
* @param i The index for the evaluated vector to give us the desired scalar
* value.
* @param x The point at which to evaluate the basis polynomial.
*/
ComponentDerivativeFactor(Key key, const double &z,
const SharedNoiseModel &model, const size_t N,
size_t i, double x)
: Base(key, z, model, Func(N, i, x)) {}
/**
* @brief Construct a new ComponentDerivativeFactor object.
*
* @param key The key to the ParameterMatrix which represents the basis
* polynomial.
* @param z The scalar measurement value at a specific index `i` of the full
* measurement vector.
* @param model The degree of the polynomial.
* @param N The degree of the polynomial.
* @param i The index for the evaluated vector to give us the desired scalar
* value.
* @param x The point at which to evaluate the basis polynomial.
* @param a Lower bound for the polynomial.
* @param b Upper bound for the polynomial.
*/
ComponentDerivativeFactor(Key key, const double &z,
const SharedNoiseModel &model, const size_t N,
size_t i, double x, double a, double b)
: Base(key, z, model, Func(N, i, x, a, b)) {}
virtual ~ComponentDerivativeFactor() {}
};
} // namespace gtsam

View File

@ -0,0 +1,6 @@
# Install headers
file(GLOB basis_headers "*.h")
install(FILES ${basis_headers} DESTINATION include/gtsam/basis)
# Build tests
add_subdirectory(tests)

98
gtsam/basis/Chebyshev.cpp Normal file
View File

@ -0,0 +1,98 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Chebyshev.cpp
* @brief Chebyshev basis decompositions
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#include <gtsam/basis/Chebyshev.h>
namespace gtsam {
/**
* @brief Scale x from [a, b] to [t1, t2]
*
* ((b'-a') * (x - a) / (b - a)) + a'
*
* @param x Value to scale to new range.
* @param a Original lower limit.
* @param b Original upper limit.
* @param t1 New lower limit.
* @param t2 New upper limit.
* @return double
*/
static double scale(double x, double a, double b, double t1, double t2) {
return ((t2 - t1) * (x - a) / (b - a)) + t1;
}
Weights Chebyshev1Basis::CalculateWeights(size_t N, double x, double a,
double b) {
Weights Tx(1, N);
x = scale(x, a, b, -1, 1);
Tx(0) = 1;
Tx(1) = x;
for (size_t i = 2; i < N; i++) {
// instead of cos(i*acos(x)), this recurrence is much faster
Tx(i) = 2 * x * Tx(i - 1) - Tx(i - 2);
}
return Tx;
}
Weights Chebyshev1Basis::DerivativeWeights(size_t N, double x, double a,
double b) {
Weights Ux = Chebyshev2Basis::CalculateWeights(N, x, a, b);
Weights weights = Weights::Zero(N);
for (size_t n = 1; n < N; n++) {
weights(n) = n * Ux(n - 1);
}
return weights;
}
Weights Chebyshev2Basis::CalculateWeights(size_t N, double x, double a,
double b) {
Weights Ux(N);
x = scale(x, a, b, -1, 1);
Ux(0) = 1;
Ux(1) = 2 * x;
for (size_t i = 2; i < N; i++) {
// instead of cos(i*acos(x)), this recurrence is much faster
Ux(i) = 2 * x * Ux(i - 1) - Ux(i - 2);
}
return Ux;
}
Weights Chebyshev2Basis::DerivativeWeights(size_t N, double x, double a,
double b) {
Weights Tx = Chebyshev1Basis::CalculateWeights(N + 1, x, a, b);
Weights Ux = Chebyshev2Basis::CalculateWeights(N, x, a, b);
Weights weights(N);
x = scale(x, a, b, -1, 1);
if (x == -1 || x == 1) {
throw std::runtime_error(
"Derivative of Chebyshev2 Basis does not exist at range limits.");
}
for (size_t n = 0; n < N; n++) {
weights(n) = ((n + 1) * Tx(n + 1) - x * Ux(n)) / (x * x - 1);
}
return weights;
}
} // namespace gtsam

109
gtsam/basis/Chebyshev.h Normal file
View File

@ -0,0 +1,109 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Chebyshev.h
* @brief Chebyshev basis decompositions
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#pragma once
#include <gtsam/base/Manifold.h>
#include <gtsam/basis/Basis.h>
#include <unsupported/Eigen/KroneckerProduct>
namespace gtsam {
/**
* Basis of Chebyshev polynomials of the first kind
* https://en.wikipedia.org/wiki/Chebyshev_polynomials#First_kind
* These are typically denoted with the symbol T_n, where n is the degree.
* The parameter N is the number of coefficients, i.e., N = n+1.
*/
struct Chebyshev1Basis : Basis<Chebyshev1Basis> {
using Parameters = Eigen::Matrix<double, -1, 1 /*Nx1*/>;
Parameters parameters_;
/**
* @brief Evaluate Chebyshev Weights on [-1,1] at x up to order N-1 (N values)
*
* @param N Degree of the polynomial.
* @param x Point to evaluate polynomial at.
* @param a Lower limit of polynomial (default=-1).
* @param b Upper limit of polynomial (default=1).
*/
static Weights CalculateWeights(size_t N, double x, double a = -1,
double b = 1);
/**
* @brief Evaluate Chebyshev derivative at x.
* The derivative weights are pre-multiplied to the polynomial Parameters.
*
* From Wikipedia we have D[T_n(x),x] = n*U_{n-1}(x)
* I.e. the derivative fo a first kind cheb is just a second kind cheb
* So, we define a second kind basis here of order N-1
* Note that it has one less weight.
*
* The Parameters pertain to 1st kind chebs up to order N-1
* But of course the first one (order 0) is constant, so omit that weight.
*
* @param N Degree of the polynomial.
* @param x Point to evaluate polynomial at.
* @param a Lower limit of polynomial (default=-1).
* @param b Upper limit of polynomial (default=1).
* @return Weights
*/
static Weights DerivativeWeights(size_t N, double x, double a = -1,
double b = 1);
}; // Chebyshev1Basis
/**
* Basis of Chebyshev polynomials of the second kind.
* https://en.wikipedia.org/wiki/Chebyshev_polynomials#Second_kind
* These are typically denoted with the symbol U_n, where n is the degree.
* The parameter N is the number of coefficients, i.e., N = n+1.
* In contrast to the templates in Chebyshev2, the classes below specify
* basis functions, weighted combinations of which are used to approximate
* functions. In this sense, they are like the sines and cosines of the Fourier
* basis.
*/
struct Chebyshev2Basis : Basis<Chebyshev2Basis> {
using Parameters = Eigen::Matrix<double, -1, 1 /*Nx1*/>;
/**
* Evaluate Chebyshev Weights on [-1,1] at any x up to order N-1 (N values).
*
* @param N Degree of the polynomial.
* @param x Point to evaluate polynomial at.
* @param a Lower limit of polynomial (default=-1).
* @param b Upper limit of polynomial (default=1).
*/
static Weights CalculateWeights(size_t N, double x, double a = -1,
double b = 1);
/**
* @brief Evaluate Chebyshev derivative at x.
*
* @param N Degree of the polynomial.
* @param x Point to evaluate polynomial at.
* @param a Lower limit of polynomial (default=-1).
* @param b Upper limit of polynomial (default=1).
* @return Weights
*/
static Weights DerivativeWeights(size_t N, double x, double a = -1,
double b = 1);
}; // Chebyshev2Basis
} // namespace gtsam

205
gtsam/basis/Chebyshev2.cpp Normal file
View File

@ -0,0 +1,205 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Chebyshev2.cpp
* @brief Chebyshev parameterizations on Chebyshev points of second kind
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#include <gtsam/basis/Chebyshev2.h>
namespace gtsam {
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
// Allocate space for weights
Weights weights(N);
// We start by getting distances from x to all Chebyshev points
// as well as getting smallest distance
Weights distances(N);
for (size_t j = 0; j < N; j++) {
const double dj =
x - Point(N, j, a, b); // only thing that depends on [a,b]
if (std::abs(dj) < 1e-10) {
// exceptional case: x coincides with a Chebyshev point
weights.setZero();
weights(j) = 1;
return weights;
}
distances(j) = dj;
}
// Beginning of interval, j = 0, x(0) = a
weights(0) = 0.5 / distances(0);
// All intermediate points j=1:N-2
double d = weights(0), s = -1; // changes sign s at every iteration
for (size_t j = 1; j < N - 1; j++, s = -s) {
weights(j) = s / distances(j);
d += weights(j);
}
// End of interval, j = N-1, x(N-1) = b
weights(N - 1) = 0.5 * s / distances(N - 1);
d += weights(N - 1);
// normalize
return weights / d;
}
Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
// Allocate space for weights
Weights weightDerivatives(N);
// toggle variable so we don't need to use `pow` for -1
double t = -1;
// We start by getting distances from x to all Chebyshev points
// as well as getting smallest distance
Weights distances(N);
for (size_t j = 0; j < N; j++) {
const double dj =
x - Point(N, j, a, b); // only thing that depends on [a,b]
if (std::abs(dj) < 1e-10) {
// exceptional case: x coincides with a Chebyshev point
weightDerivatives.setZero();
// compute the jth row of the differentiation matrix for this point
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
for (size_t k = 0; k < N; k++) {
if (j == 0 && k == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = -(cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (j == N - 1 && k == N - 1) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = (cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (k == j) {
double xj = Point(N, j);
double xj2 = xj * xj;
weightDerivatives(k) = -0.5 * xj / (1 - xj2);
} else {
double xj = Point(N, j);
double xk = Point(N, k);
double ck = (k == 0 || k == N - 1) ? 2. : 1.;
t = ((j + k) % 2) == 0 ? 1 : -1;
weightDerivatives(k) = (cj / ck) * t / (xj - xk);
}
}
return 2 * weightDerivatives / (b - a);
}
distances(j) = dj;
}
// This section of code computes the derivative of
// the Barycentric Interpolation weights formula by applying
// the chain rule on the original formula.
// g and k are multiplier terms which represent the derivatives of
// the numerator and denominator
double g = 0, k = 0;
double w = 1;
for (size_t j = 0; j < N; j++) {
if (j == 0 || j == N - 1) {
w = 0.5;
} else {
w = 1.0;
}
t = (j % 2 == 0) ? 1 : -1;
double c = t / distances(j);
g += w * c;
k += (w * c / distances(j));
}
double s = 1; // changes sign s at every iteration
double g2 = g * g;
for (size_t j = 0; j < N; j++, s = -s) {
// Beginning of interval, j = 0, x0 = -1.0 and end of interval, j = N-1,
// x0 = 1.0
if (j == 0 || j == N - 1) {
w = 0.5;
} else {
// All intermediate points j=1:N-2
w = 1.0;
}
weightDerivatives(j) = (w * -s / (g * distances(j) * distances(j))) -
(w * -s * k / (g2 * distances(j)));
}
return weightDerivatives;
}
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a,
double b) {
DiffMatrix D(N, N);
if (N == 1) {
D(0, 0) = 1;
return D;
}
// toggle variable so we don't need to use `pow` for -1
double t = -1;
for (size_t i = 0; i < N; i++) {
double xi = Point(N, i);
double ci = (i == 0 || i == N - 1) ? 2. : 1.;
for (size_t j = 0; j < N; j++) {
if (i == 0 && j == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
D(i, j) = -(ci * (N - 1) * (N - 1) + 1) / 6.0;
} else if (i == N - 1 && j == N - 1) {
// we reverse the sign since we order the cheb points from -1 to 1
D(i, j) = (ci * (N - 1) * (N - 1) + 1) / 6.0;
} else if (i == j) {
double xi2 = xi * xi;
D(i, j) = -xi / (2 * (1 - xi2));
} else {
double xj = Point(N, j);
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
t = ((i + j) % 2) == 0 ? 1 : -1;
D(i, j) = (ci / cj) * t / (xi - xj);
}
}
}
// scale the matrix to the range
return D / ((b - a) / 2.0);
}
Weights Chebyshev2::IntegrationWeights(size_t N, double a, double b) {
// Allocate space for weights
Weights weights(N);
size_t K = N - 1, // number of intervals between N points
K2 = K * K;
weights(0) = 0.5 * (b - a) / (K2 + K % 2 - 1);
weights(N - 1) = weights(0);
size_t last_k = K / 2 + K % 2 - 1;
for (size_t i = 1; i <= N - 2; ++i) {
double theta = i * M_PI / K;
weights(i) = (K % 2 == 0) ? 1 - cos(K * theta) / (K2 - 1) : 1;
for (size_t k = 1; k <= last_k; ++k)
weights(i) -= 2 * cos(2 * k * theta) / (4 * k * k - 1);
weights(i) *= (b - a) / K;
}
return weights;
}
} // namespace gtsam

148
gtsam/basis/Chebyshev2.h Normal file
View File

@ -0,0 +1,148 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Chebyshev2.h
* @brief Pseudo-spectral parameterization for Chebyshev polynomials of the
* second kind.
*
* In a pseudo-spectral case, rather than the parameters acting as
* weights for the bases polynomials (as in Chebyshev2Basis), here the
* parameters are the *values* at a specific set of points in the interval, the
* "Chebyshev points". These values uniquely determine the polynomial that
* interpolates them at the Chebyshev points.
*
* This is different from Chebyshev.h since it leverage ideas from
* pseudo-spectral optimization, i.e. we don't decompose into basis functions,
* rather estimate function parameters that enforce function nodes at Chebyshev
* points.
*
* Please refer to Agrawal21icra for more details.
*
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#pragma once
#include <gtsam/base/Manifold.h>
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/basis/Basis.h>
#include <boost/function.hpp>
namespace gtsam {
/**
* Chebyshev Interpolation on Chebyshev points of the second kind
* Note that N here, the number of points, is one less than N from
* 'Approximation Theory and Approximation Practice by L. N. Trefethen (pg.42)'.
*/
class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
using Base = Basis<Chebyshev2>;
using Parameters = Eigen::Matrix<double, /*Nx1*/ -1, 1>;
using DiffMatrix = Eigen::Matrix<double, /*NxN*/ -1, -1>;
/// Specific Chebyshev point
static double Point(size_t N, int j) {
assert(j >= 0 && size_t(j) < N);
const double dtheta = M_PI / (N > 1 ? (N - 1) : 1);
// We add -PI so that we get values ordered from -1 to +1
// sin(- M_PI_2 + dtheta*j); also works
return cos(-M_PI + dtheta * j);
}
/// Specific Chebyshev point, within [a,b] interval
static double Point(size_t N, int j, double a, double b) {
assert(j >= 0 && size_t(j) < N);
const double dtheta = M_PI / (N - 1);
// We add -PI so that we get values ordered from -1 to +1
return a + (b - a) * (1. + cos(-M_PI + dtheta * j)) / 2;
}
/// All Chebyshev points
static Vector Points(size_t N) {
Vector points(N);
for (size_t j = 0; j < N; j++) points(j) = Point(N, j);
return points;
}
/// All Chebyshev points, within [a,b] interval
static Vector Points(size_t N, double a, double b) {
Vector points = Points(N);
const double T1 = (a + b) / 2, T2 = (b - a) / 2;
points = T1 + (T2 * points).array();
return points;
}
/**
* Evaluate Chebyshev Weights on [-1,1] at any x up to order N-1 (N values)
* These weights implement barycentric interpolation at a specific x.
* More precisely, f(x) ~ [w0;...;wN] * [f0;...;fN], where the fj are the
* values of the function f at the Chebyshev points. As such, for a given x we
* obtain a linear map from parameter vectors f to interpolated values f(x).
* Optional [a,b] interval can be specified as well.
*/
static Weights CalculateWeights(size_t N, double x, double a = -1,
double b = 1);
/**
* Evaluate derivative of barycentric weights.
* This is easy and efficient via the DifferentiationMatrix.
*/
static Weights DerivativeWeights(size_t N, double x, double a = -1,
double b = 1);
/// compute D = differentiation matrix, Trefethen00book p.53
/// when given a parameter vector f of function values at the Chebyshev
/// points, D*f are the values of f'.
/// https://people.maths.ox.ac.uk/trefethen/8all.pdf Theorem 8.4
static DiffMatrix DifferentiationMatrix(size_t N, double a = -1,
double b = 1);
/**
* Evaluate Clenshaw-Curtis integration weights.
* Trefethen00book, pg 128, clencurt.m
* Note that N in clencurt.m is 1 less than our N
* K = N-1;
theta = pi*(0:K)'/K;
w = zeros(1,N); ii = 2:K; v = ones(K-1, 1);
if mod(K,2) == 0
w(1) = 1/(K^2-1); w(N) = w(1);
for k=1:K/2-1, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
v = v - cos(K*theta(ii))/(K^2-1);
else
w(1) = 1/K^2; w(N) = w(1);
for k=1:K/2, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
end
w(ii) = 2*v/K;
*/
static Weights IntegrationWeights(size_t N, double a = -1, double b = 1);
/**
* Create matrix of values at Chebyshev points given vector-valued function.
*/
template <size_t M>
static Matrix matrix(boost::function<Eigen::Matrix<double, M, 1>(double)> f,
size_t N, double a = -1, double b = 1) {
Matrix Xmat(M, N);
for (size_t j = 0; j < N; j++) {
Xmat.col(j) = f(Point(N, j, a, b));
}
return Xmat;
}
}; // \ Chebyshev2
} // namespace gtsam

99
gtsam/basis/FitBasis.h Normal file
View File

@ -0,0 +1,99 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FitBasis.h
* @date July 4, 2020
* @author Varun Agrawal, Frank Dellaert
* @brief Fit a Basis using least-squares
*/
/*
* Concept needed for LS. Parameters = Coefficients | Values
* - Parameters, Jacobian
* - PredictFactor(double x)(Parameters p, OptionalJacobian<1,N> H)
*/
#pragma once
#include <gtsam/basis/Basis.h>
#include <gtsam/basis/BasisFactors.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
namespace gtsam {
/// Our sequence representation is a map of {x: y} values where y = f(x)
using Sequence = std::map<double, double>;
/// A sample is a key-value pair from a sequence.
using Sample = std::pair<double, double>;
/**
* Class that does regression via least squares
* Example usage:
* size_t N = 3;
* auto fit = FitBasis<Chebyshev2>(data_points, noise_model, N);
* Vector coefficients = fit.parameters();
*
* where `data_points` are a map from `x` to `y` values indicating a function
* mapping at specific points, `noise_model` is the gaussian noise model, and
* `N` is the degree of the polynomial basis used to fit the function.
*/
template <class Basis>
class FitBasis {
public:
using Parameters = typename Basis::Parameters;
private:
Parameters parameters_;
public:
/// Create nonlinear FG from Sequence
static NonlinearFactorGraph NonlinearGraph(const Sequence& sequence,
const SharedNoiseModel& model,
size_t N) {
NonlinearFactorGraph graph;
for (const Sample sample : sequence) {
graph.emplace_shared<EvaluationFactor<Basis>>(0, sample.second, model, N,
sample.first);
}
return graph;
}
/// Create linear FG from Sequence
static GaussianFactorGraph::shared_ptr LinearGraph(
const Sequence& sequence, const SharedNoiseModel& model, size_t N) {
NonlinearFactorGraph graph = NonlinearGraph(sequence, model, N);
Values values;
values.insert<Parameters>(0, Parameters::Zero(N));
GaussianFactorGraph::shared_ptr gfg = graph.linearize(values);
return gfg;
}
/**
* @brief Construct a new FitBasis object.
*
* @param sequence map of x->y values for a function, a.k.a. y = f(x).
* @param model The noise model to use.
* @param N The degree of the polynomial to fit.
*/
FitBasis(const Sequence& sequence, const SharedNoiseModel& model, size_t N) {
GaussianFactorGraph::shared_ptr gfg = LinearGraph(sequence, model, N);
VectorValues solution = gfg->optimize();
parameters_ = solution.at(0);
}
/// Return Fourier coefficients
Parameters parameters() const { return parameters_; }
};
} // namespace gtsam

108
gtsam/basis/Fourier.h Normal file
View File

@ -0,0 +1,108 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Fourier.h
* @brief Fourier decomposition, see e.g.
* http://mathworld.wolfram.com/FourierSeries.html
* @author Varun Agrawal, Frank Dellaert
* @date July 4, 2020
*/
#pragma once
#include <gtsam/basis/Basis.h>
namespace gtsam {
/// Fourier basis
class GTSAM_EXPORT FourierBasis : public Basis<FourierBasis> {
public:
using Parameters = Eigen::Matrix<double, /*Nx1*/ -1, 1>;
using DiffMatrix = Eigen::Matrix<double, /*NxN*/ -1, -1>;
/**
* @brief Evaluate Real Fourier Weights of size N in interval [a, b],
* e.g. N=5 yields bases: 1, cos(x), sin(x), cos(2*x), sin(2*x)
*
* @param N The degree of the polynomial to use.
* @param x The point at which to compute the derivaive weights.
* @return Weights
*/
static Weights CalculateWeights(size_t N, double x) {
Weights b(N);
b[0] = 1;
for (size_t i = 1, n = 1; i < N; i += 2, n++) {
b[i] = cos(n * x);
b[i + 1] = sin(n * x);
}
return b;
}
/**
* @brief Evaluate Real Fourier Weights of size N in interval [a, b],
* e.g. N=5 yields bases: 1, cos(x), sin(x), cos(2*x), sin(2*x)
*
* @param N The degree of the polynomial to use.
* @param x The point at which to compute the weights.
* @param a Lower bound of interval.
* @param b Upper bound of interval.
* @return Weights
*/
static Weights CalculateWeights(size_t N, double x, double a, double b) {
// TODO(Varun) How do we enforce an interval for Fourier series?
return CalculateWeights(N, x);
}
/**
* Compute D = differentiation matrix.
* Given coefficients c of a Fourier series c, D*c are the values of c'.
*/
static DiffMatrix DifferentiationMatrix(size_t N) {
DiffMatrix D = DiffMatrix::Zero(N, N);
double k = 1;
for (size_t i = 1; i < N; i += 2) {
D(i, i + 1) = k; // sin'(k*x) = k*cos(k*x)
D(i + 1, i) = -k; // cos'(k*x) = -k*sin(k*x)
k += 1;
}
return D;
}
/**
* @brief Get weights at a given x that calculate the derivative.
*
* @param N The degree of the polynomial to use.
* @param x The point at which to compute the derivaive weights.
* @return Weights
*/
static Weights DerivativeWeights(size_t N, double x) {
return CalculateWeights(N, x) * DifferentiationMatrix(N);
}
/**
* @brief Get derivative weights at a given x that calculate the derivative,
in the interval [a, b].
*
* @param N The degree of the polynomial to use.
* @param x The point at which to compute the derivaive weights.
* @param a Lower bound of interval.
* @param b Upper bound of interval.
* @return Weights
*/
static Weights DerivativeWeights(size_t N, double x, double a, double b) {
return CalculateWeights(N, x, a, b) * DifferentiationMatrix(N);
}
}; // FourierBasis
} // namespace gtsam

View File

@ -0,0 +1,215 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ParamaterMatrix.h
* @brief Define ParameterMatrix class which is used to store values at
* interpolation points.
* @author Varun Agrawal, Frank Dellaert
* @date September 21, 2020
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/VectorSpace.h>
#include <iostream>
namespace gtsam {
/**
* A matrix abstraction of MxN values at the Basis points.
* This class serves as a wrapper over an Eigen matrix.
* @tparam M: The dimension of the type you wish to evaluate.
* @param N: the number of Basis points (e.g. Chebyshev points of the second
* kind).
*/
template <int M>
class ParameterMatrix {
using MatrixType = Eigen::Matrix<double, M, -1>;
private:
MatrixType matrix_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
enum { dimension = Eigen::Dynamic };
/**
* Create ParameterMatrix using the number of basis points.
* @param N: The number of basis points (the columns).
*/
ParameterMatrix(const size_t N) : matrix_(M, N) { matrix_.setZero(); }
/**
* Create ParameterMatrix from an MxN Eigen Matrix.
* @param matrix: An Eigen matrix used to initialze the ParameterMatrix.
*/
ParameterMatrix(const MatrixType& matrix) : matrix_(matrix) {}
/// Get the number of rows.
size_t rows() const { return matrix_.rows(); }
/// Get the number of columns.
size_t cols() const { return matrix_.cols(); }
/// Get the underlying matrix.
MatrixType matrix() const { return matrix_; }
/// Return the tranpose of the underlying matrix.
Eigen::Matrix<double, -1, M> transpose() const { return matrix_.transpose(); }
/**
* Get the matrix row specified by `index`.
* @param index: The row index to retrieve.
*/
Eigen::Matrix<double, 1, -1> row(size_t index) const {
return matrix_.row(index);
}
/**
* Set the matrix row specified by `index`.
* @param index: The row index to set.
*/
auto row(size_t index) -> Eigen::Block<MatrixType, 1, -1, false> {
return matrix_.row(index);
}
/**
* Get the matrix column specified by `index`.
* @param index: The column index to retrieve.
*/
Eigen::Matrix<double, M, 1> col(size_t index) const {
return matrix_.col(index);
}
/**
* Set the matrix column specified by `index`.
* @param index: The column index to set.
*/
auto col(size_t index) -> Eigen::Block<MatrixType, M, 1, true> {
return matrix_.col(index);
}
/**
* Set all matrix coefficients to zero.
*/
void setZero() { matrix_.setZero(); }
/**
* Add a ParameterMatrix to another.
* @param other: ParameterMatrix to add.
*/
ParameterMatrix<M> operator+(const ParameterMatrix<M>& other) const {
return ParameterMatrix<M>(matrix_ + other.matrix());
}
/**
* Add a MxN-sized vector to the ParameterMatrix.
* @param other: Vector which is reshaped and added.
*/
ParameterMatrix<M> operator+(
const Eigen::Matrix<double, -1, 1>& other) const {
// This form avoids a deep copy and instead typecasts `other`.
Eigen::Map<const MatrixType> other_(other.data(), M, cols());
return ParameterMatrix<M>(matrix_ + other_);
}
/**
* Subtract a ParameterMatrix from another.
* @param other: ParameterMatrix to subtract.
*/
ParameterMatrix<M> operator-(const ParameterMatrix<M>& other) const {
return ParameterMatrix<M>(matrix_ - other.matrix());
}
/**
* Subtract a MxN-sized vector from the ParameterMatrix.
* @param other: Vector which is reshaped and subracted.
*/
ParameterMatrix<M> operator-(
const Eigen::Matrix<double, -1, 1>& other) const {
Eigen::Map<const MatrixType> other_(other.data(), M, cols());
return ParameterMatrix<M>(matrix_ - other_);
}
/**
* Multiply ParameterMatrix with an Eigen matrix.
* @param other: Eigen matrix which should be multiplication compatible with
* the ParameterMatrix.
*/
MatrixType operator*(const Eigen::Matrix<double, -1, -1>& other) const {
return matrix_ * other;
}
/// @name Vector Space requirements, following LieMatrix
/// @{
/**
* Print the ParameterMatrix.
* @param s: The prepend string to add more contextual info.
*/
void print(const std::string& s = "") const {
std::cout << (s == "" ? s : s + " ") << matrix_ << std::endl;
}
/**
* Check for equality up to absolute tolerance.
* @param other: The ParameterMatrix to check equality with.
* @param tol: The absolute tolerance threshold.
*/
bool equals(const ParameterMatrix<M>& other, double tol = 1e-8) const {
return gtsam::equal_with_abs_tol(matrix_, other.matrix(), tol);
}
/// Returns dimensionality of the tangent space
inline size_t dim() const { return matrix_.size(); }
/// Convert to vector form, is done row-wise
inline Vector vector() const {
using RowMajor = Eigen::Matrix<double, -1, -1, Eigen::RowMajor>;
Vector result(matrix_.size());
Eigen::Map<RowMajor>(&result(0), rows(), cols()) = matrix_;
return result;
}
/** Identity function to satisfy VectorSpace traits.
*
* NOTE: The size at compile time is unknown so this identity is zero
* length and thus not valid.
*/
inline static ParameterMatrix identity() {
// throw std::runtime_error(
// "ParameterMatrix::identity(): Don't use this function");
return ParameterMatrix(0);
}
/// @}
};
// traits for ParameterMatrix
template <int M>
struct traits<ParameterMatrix<M>>
: public internal::VectorSpace<ParameterMatrix<M>> {};
/* ************************************************************************* */
// Stream operator that takes a ParameterMatrix. Used for printing.
template <int M>
inline std::ostream& operator<<(std::ostream& os,
const ParameterMatrix<M>& parameterMatrix) {
os << parameterMatrix.matrix();
return os;
}
} // namespace gtsam

146
gtsam/basis/basis.i Normal file
View File

@ -0,0 +1,146 @@
//*************************************************************************
// basis
//*************************************************************************
namespace gtsam {
// TODO(gerry): add all the Functors to the Basis interfaces, e.g.
// `EvaluationFunctor`
#include <gtsam/basis/Fourier.h>
class FourierBasis {
static Vector CalculateWeights(size_t N, double x);
static Matrix WeightMatrix(size_t N, Vector x);
static Matrix DifferentiationMatrix(size_t N);
static Vector DerivativeWeights(size_t N, double x);
};
#include <gtsam/basis/Chebyshev.h>
class Chebyshev1Basis {
static Matrix CalculateWeights(size_t N, double x);
static Matrix WeightMatrix(size_t N, Vector X);
};
class Chebyshev2Basis {
static Matrix CalculateWeights(size_t N, double x);
static Matrix WeightMatrix(size_t N, Vector x);
};
#include <gtsam/basis/Chebyshev2.h>
class Chebyshev2 {
static double Point(size_t N, int j);
static double Point(size_t N, int j, double a, double b);
static Vector Points(size_t N);
static Vector Points(size_t N, double a, double b);
static Matrix WeightMatrix(size_t N, Vector X);
static Matrix WeightMatrix(size_t N, Vector X, double a, double b);
static Matrix CalculateWeights(size_t N, double x, double a, double b);
static Matrix DerivativeWeights(size_t N, double x, double a, double b);
static Matrix IntegrationWeights(size_t N, double a, double b);
static Matrix DifferentiationMatrix(size_t N, double a, double b);
// TODO Needs OptionalJacobian
// static double Derivative(double x, Vector f);
};
#include <gtsam/basis/ParameterMatrix.h>
template <M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}>
class ParameterMatrix {
ParameterMatrix(const size_t N);
ParameterMatrix(const Matrix& matrix);
Matrix matrix() const;
void print(const string& s = "") const;
};
#include <gtsam/basis/BasisFactors.h>
template <BASIS = {gtsam::Chebyshev2, gtsam::Chebyshev1Basis,
gtsam::Chebyshev2Basis, gtsam::FourierBasis}>
virtual class EvaluationFactor : gtsam::NoiseModelFactor {
EvaluationFactor();
EvaluationFactor(gtsam::Key key, const double z,
const gtsam::noiseModel::Base* model, const size_t N,
double x);
EvaluationFactor(gtsam::Key key, const double z,
const gtsam::noiseModel::Base* model, const size_t N,
double x, double a, double b);
};
template <BASIS, M>
virtual class VectorEvaluationFactor : gtsam::NoiseModelFactor {
VectorEvaluationFactor();
VectorEvaluationFactor(gtsam::Key key, const Vector& z,
const gtsam::noiseModel::Base* model, const size_t N,
double x);
VectorEvaluationFactor(gtsam::Key key, const Vector& z,
const gtsam::noiseModel::Base* model, const size_t N,
double x, double a, double b);
};
// TODO(Varun) Better way to support arbitrary dimensions?
// Especially if users mainly do `pip install gtsam` for the Python wrapper.
typedef gtsam::VectorEvaluationFactor<gtsam::Chebyshev2, 3>
VectorEvaluationFactorChebyshev2D3;
typedef gtsam::VectorEvaluationFactor<gtsam::Chebyshev2, 4>
VectorEvaluationFactorChebyshev2D4;
typedef gtsam::VectorEvaluationFactor<gtsam::Chebyshev2, 12>
VectorEvaluationFactorChebyshev2D12;
template <BASIS, P>
virtual class VectorComponentFactor : gtsam::NoiseModelFactor {
VectorComponentFactor();
VectorComponentFactor(gtsam::Key key, const double z,
const gtsam::noiseModel::Base* model, const size_t N,
size_t i, double x);
VectorComponentFactor(gtsam::Key key, const double z,
const gtsam::noiseModel::Base* model, const size_t N,
size_t i, double x, double a, double b);
};
typedef gtsam::VectorComponentFactor<gtsam::Chebyshev2, 3>
VectorComponentFactorChebyshev2D3;
typedef gtsam::VectorComponentFactor<gtsam::Chebyshev2, 4>
VectorComponentFactorChebyshev2D4;
typedef gtsam::VectorComponentFactor<gtsam::Chebyshev2, 12>
VectorComponentFactorChebyshev2D12;
template <BASIS, T>
virtual class ManifoldEvaluationFactor : gtsam::NoiseModelFactor {
ManifoldEvaluationFactor();
ManifoldEvaluationFactor(gtsam::Key key, const T& z,
const gtsam::noiseModel::Base* model, const size_t N,
double x);
ManifoldEvaluationFactor(gtsam::Key key, const T& z,
const gtsam::noiseModel::Base* model, const size_t N,
double x, double a, double b);
};
// TODO(gerry): Add `DerivativeFactor`, `VectorDerivativeFactor`, and
// `ComponentDerivativeFactor`
#include <gtsam/basis/FitBasis.h>
template <BASIS = {gtsam::FourierBasis, gtsam::Chebyshev1Basis,
gtsam::Chebyshev2Basis, gtsam::Chebyshev2}>
class FitBasis {
FitBasis(const std::map<double, double>& sequence,
const gtsam::noiseModel::Base* model, size_t N);
static gtsam::NonlinearFactorGraph NonlinearGraph(
const std::map<double, double>& sequence,
const gtsam::noiseModel::Base* model, size_t N);
static gtsam::GaussianFactorGraph::shared_ptr LinearGraph(
const std::map<double, double>& sequence,
const gtsam::noiseModel::Base* model, size_t N);
Parameters parameters() const;
};
} // namespace gtsam

View File

@ -0,0 +1 @@
gtsamAddTestsGlob(basis "test*.cpp" "" "gtsam")

View File

@ -0,0 +1,236 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testChebyshev.cpp
* @date July 4, 2020
* @author Varun Agrawal
* @brief Unit tests for Chebyshev Basis Decompositions
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/basis/Chebyshev.h>
#include <gtsam/basis/FitBasis.h>
#include <gtsam/nonlinear/factorTesting.h>
using namespace std;
using namespace gtsam;
auto model = noiseModel::Unit::Create(1);
const size_t N = 3;
//******************************************************************************
TEST(Chebyshev, Chebyshev1) {
using Synth = Chebyshev1Basis::EvaluationFunctor;
Vector c(N);
double x;
c << 12, 3, 1;
x = -1.0;
EXPECT_DOUBLES_EQUAL(12 + 3 * x + 2 * x * x - 1, Synth(N, x)(c), 1e-9);
x = -0.5;
EXPECT_DOUBLES_EQUAL(12 + 3 * x + 2 * x * x - 1, Synth(N, x)(c), 1e-9);
x = 0.3;
EXPECT_DOUBLES_EQUAL(12 + 3 * x + 2 * x * x - 1, Synth(N, x)(c), 1e-9);
}
//******************************************************************************
TEST(Chebyshev, Chebyshev2) {
using Synth = Chebyshev2Basis::EvaluationFunctor;
Vector c(N);
double x;
c << 12, 3, 1;
x = -1.0;
EXPECT_DOUBLES_EQUAL(12 + 6 * x + 4 * x * x - 1, Synth(N, x)(c), 1e-9);
x = -0.5;
EXPECT_DOUBLES_EQUAL(12 + 6 * x + 4 * x * x - 1, Synth(N, x)(c), 1e-9);
x = 0.3;
EXPECT_DOUBLES_EQUAL(12 + 6 * x + 4 * x * x - 1, Synth(N, x)(c), 1e-9);
}
//******************************************************************************
TEST(Chebyshev, Evaluation) {
Chebyshev1Basis::EvaluationFunctor fx(N, 0.5);
Vector c(N);
c << 3, 5, -12;
EXPECT_DOUBLES_EQUAL(11.5, fx(c), 1e-9);
}
//******************************************************************************
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
TEST(Chebyshev, Expression) {
// Create linear factor graph
NonlinearFactorGraph graph;
Key key(1);
// Let's pretend we have 6 GPS measurements (we just do x coordinate)
// at times
const size_t m = 6;
Vector t(m);
t << -0.7, -0.4, 0.1, 0.3, 0.7, 0.9;
Vector x(m);
x << -0.7, -0.4, 0.1, 0.3, 0.7, 0.9;
for (size_t i = 0; i < m; i++) {
graph.emplace_shared<EvaluationFactor<Chebyshev1Basis>>(key, x(i), model, N,
t(i));
}
// Solve
Values initial;
initial.insert<Vector>(key, Vector::Zero(N)); // initial does not matter
// ... and optimize
GaussNewtonParams parameters;
GaussNewtonOptimizer optimizer(graph, initial, parameters);
Values result = optimizer.optimize();
// Check
Vector expected(N);
expected << 0, 1, 0;
Vector actual_c = result.at<Vector>(key);
EXPECT(assert_equal(expected, actual_c));
// Calculate and print covariances
Marginals marginals(graph, result);
Matrix3 cov = marginals.marginalCovariance(key);
EXPECT_DOUBLES_EQUAL(0.626, cov(1, 1), 1e-3);
// Predict x at time 1.0
Chebyshev1Basis::EvaluationFunctor f(N, 1.0);
Matrix H;
double actual = f(actual_c, H);
EXPECT_DOUBLES_EQUAL(1.0, actual, 1e-9);
// Calculate predictive variance on prediction
double actual_variance_on_prediction = (H * cov * H.transpose())(0);
EXPECT_DOUBLES_EQUAL(1.1494, actual_variance_on_prediction, 1e-4);
}
//******************************************************************************
TEST(Chebyshev, Decomposition) {
const size_t M = 16;
// Create example sequence
Sequence sequence;
for (size_t i = 0; i < M; i++) {
double x = ((double)i / M); // - 0.99;
double y = x;
sequence[x] = y;
}
// Do Chebyshev Decomposition
FitBasis<Chebyshev1Basis> actual(sequence, model, N);
// Check
Vector expected = Vector::Zero(N);
expected(1) = 1;
EXPECT(assert_equal(expected, (Vector)actual.parameters(), 1e-4));
}
//******************************************************************************
TEST(Chebyshev1, Derivative) {
Vector c(N);
c << 12, 3, 2;
Weights D;
double x = -1.0;
D = Chebyshev1Basis::DerivativeWeights(N, x);
// regression
EXPECT_DOUBLES_EQUAL(-5, (D * c)(0), 1e-9);
x = -0.5;
D = Chebyshev1Basis::DerivativeWeights(N, x);
// regression
EXPECT_DOUBLES_EQUAL(-1, (D * c)(0), 1e-9);
x = 0.3;
D = Chebyshev1Basis::DerivativeWeights(N, x);
// regression
EXPECT_DOUBLES_EQUAL(5.4, (D * c)(0), 1e-9);
}
//******************************************************************************
Vector3 f(-6, 1, 0.5);
double proxy1(double x, size_t N) {
return Chebyshev1Basis::EvaluationFunctor(N, x)(Vector(f));
}
TEST(Chebyshev1, Derivative2) {
const double x = 0.5;
auto D = Chebyshev1Basis::DerivativeWeights(N, x);
Matrix numeric_dTdx =
numericalDerivative21<double, double, double>(proxy1, x, N);
// regression
EXPECT_DOUBLES_EQUAL(2, numeric_dTdx(0, 0), 1e-9);
EXPECT_DOUBLES_EQUAL(2, (D * f)(0), 1e-9);
}
//******************************************************************************
TEST(Chebyshev2, Derivative) {
Vector c(N);
c << 12, 6, 2;
Weights D;
double x = -1.0;
CHECK_EXCEPTION(Chebyshev2Basis::DerivativeWeights(N, x), std::runtime_error);
x = 1.0;
CHECK_EXCEPTION(Chebyshev2Basis::DerivativeWeights(N, x), std::runtime_error);
x = -0.5;
D = Chebyshev2Basis::DerivativeWeights(N, x);
// regression
EXPECT_DOUBLES_EQUAL(4, (D * c)(0), 1e-9);
x = 0.3;
D = Chebyshev2Basis::DerivativeWeights(N, x);
// regression
EXPECT_DOUBLES_EQUAL(16.8, (D * c)(0), 1e-9);
x = 0.75;
D = Chebyshev2Basis::DerivativeWeights(N, x);
// regression
EXPECT_DOUBLES_EQUAL(24, (D * c)(0), 1e-9);
x = 10;
D = Chebyshev2Basis::DerivativeWeights(N, x, 0, 20);
// regression
EXPECT_DOUBLES_EQUAL(12, (D * c)(0), 1e-9);
}
//******************************************************************************
double proxy2(double x, size_t N) {
return Chebyshev2Basis::EvaluationFunctor(N, x)(Vector(f));
}
TEST(Chebyshev2, Derivative2) {
const double x = 0.5;
auto D = Chebyshev2Basis::DerivativeWeights(N, x);
Matrix numeric_dTdx =
numericalDerivative21<double, double, double>(proxy2, x, N);
// regression
EXPECT_DOUBLES_EQUAL(4, numeric_dTdx(0, 0), 1e-9);
EXPECT_DOUBLES_EQUAL(4, (D * f)(0), 1e-9);
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************

View File

@ -0,0 +1,435 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testChebyshev.cpp
* @date July 4, 2020
* @author Varun Agrawal
* @brief Unit tests for Chebyshev Basis Decompositions via pseudo-spectral
* methods
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/basis/Chebyshev2.h>
#include <gtsam/basis/FitBasis.h>
#include <gtsam/nonlinear/factorTesting.h>
using namespace std;
using namespace gtsam;
using namespace boost::placeholders;
noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
const size_t N = 32;
//******************************************************************************
TEST(Chebyshev2, Point) {
static const int N = 5;
auto points = Chebyshev2::Points(N);
Vector expected(N);
expected << -1., -sqrt(2.) / 2., 0., sqrt(2.) / 2., 1.;
static const double tol = 1e-15; // changing this reveals errors
EXPECT_DOUBLES_EQUAL(expected(0), points(0), tol);
EXPECT_DOUBLES_EQUAL(expected(1), points(1), tol);
EXPECT_DOUBLES_EQUAL(expected(2), points(2), tol);
EXPECT_DOUBLES_EQUAL(expected(3), points(3), tol);
EXPECT_DOUBLES_EQUAL(expected(4), points(4), tol);
// Check symmetry
EXPECT_DOUBLES_EQUAL(Chebyshev2::Point(N, 0), -Chebyshev2::Point(N, 4), tol);
EXPECT_DOUBLES_EQUAL(Chebyshev2::Point(N, 1), -Chebyshev2::Point(N, 3), tol);
}
//******************************************************************************
TEST(Chebyshev2, PointInInterval) {
static const int N = 5;
auto points = Chebyshev2::Points(N, 0, 20);
Vector expected(N);
expected << 0., 1. - sqrt(2.) / 2., 1., 1. + sqrt(2.) / 2., 2.;
expected *= 10.0;
static const double tol = 1e-15; // changing this reveals errors
EXPECT_DOUBLES_EQUAL(expected(0), points(0), tol);
EXPECT_DOUBLES_EQUAL(expected(1), points(1), tol);
EXPECT_DOUBLES_EQUAL(expected(2), points(2), tol);
EXPECT_DOUBLES_EQUAL(expected(3), points(3), tol);
EXPECT_DOUBLES_EQUAL(expected(4), points(4), tol);
// all at once
Vector actual = Chebyshev2::Points(N, 0, 20);
CHECK(assert_equal(expected, actual));
}
//******************************************************************************
// InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, 0.5]
TEST(Chebyshev2, Interpolate2) {
size_t N = 3;
Chebyshev2::EvaluationFunctor fx(N, 0.5);
Vector f(N);
f << 4, 2, 6;
EXPECT_DOUBLES_EQUAL(3.25, fx(f), 1e-9);
}
//******************************************************************************
// InterpolatingPolynomial[{{0, 4}, {1, 2}, {2, 6}}, 1.5]
TEST(Chebyshev2, Interpolate2_Interval) {
Chebyshev2::EvaluationFunctor fx(3, 1.5, 0, 2);
Vector3 f(4, 2, 6);
EXPECT_DOUBLES_EQUAL(3.25, fx(f), 1e-9);
}
//******************************************************************************
// InterpolatingPolynomial[{{-1, 4}, {-Sqrt[2]/2, 2}, {0, 6}, {Sqrt[2]/2,3}, {1,
// 3}}, 0.5]
TEST(Chebyshev2, Interpolate5) {
Chebyshev2::EvaluationFunctor fx(5, 0.5);
Vector f(5);
f << 4, 2, 6, 3, 3;
EXPECT_DOUBLES_EQUAL(4.34283, fx(f), 1e-5);
}
//******************************************************************************
// Interpolating vectors
TEST(Chebyshev2, InterpolateVector) {
double t = 30, a = 0, b = 100;
const size_t N = 3;
// Create 2x3 matrix with Vectors at Chebyshev points
ParameterMatrix<2> X(N);
X.row(0) = Chebyshev2::Points(N, a, b); // slope 1 ramp
// Check value
Vector expected(2);
expected << t, 0;
Eigen::Matrix<double, /*2x2N*/ -1, -1> actualH(2, 2 * N);
Chebyshev2::VectorEvaluationFunctor<2> fx(N, t, a, b);
EXPECT(assert_equal(expected, fx(X, actualH), 1e-9));
// Check derivative
boost::function<Vector2(ParameterMatrix<2>)> f = boost::bind(
&Chebyshev2::VectorEvaluationFunctor<2>::operator(), fx, _1, boost::none);
Matrix numericalH =
numericalDerivative11<Vector2, ParameterMatrix<2>, 2 * N>(f, X);
EXPECT(assert_equal(numericalH, actualH, 1e-9));
}
//******************************************************************************
TEST(Chebyshev2, Decomposition) {
// Create example sequence
Sequence sequence;
for (size_t i = 0; i < 16; i++) {
double x = (double)i / 16. - 0.99, y = x;
sequence[x] = y;
}
// Do Chebyshev Decomposition
FitBasis<Chebyshev2> actual(sequence, model, 3);
// Check
Vector expected(3);
expected << -1, 0, 1;
EXPECT(assert_equal(expected, actual.parameters(), 1e-4));
}
//******************************************************************************
TEST(Chebyshev2, DifferentiationMatrix3) {
// Trefethen00book, p.55
const size_t N = 3;
Matrix expected(N, N);
// Differentiation matrix computed from Chebfun
expected << 1.5000, -2.0000, 0.5000, //
0.5000, -0.0000, -0.5000, //
-0.5000, 2.0000, -1.5000;
// multiply by -1 since the cheb points have a phase shift wrt Trefethen
// This was verified with chebfun
expected = -expected;
Matrix actual = Chebyshev2::DifferentiationMatrix(N);
EXPECT(assert_equal(expected, actual, 1e-4));
}
//******************************************************************************
TEST(Chebyshev2, DerivativeMatrix6) {
// Trefethen00book, p.55
const size_t N = 6;
Matrix expected(N, N);
expected << 8.5000, -10.4721, 2.8944, -1.5279, 1.1056, -0.5000, //
2.6180, -1.1708, -2.0000, 0.8944, -0.6180, 0.2764, //
-0.7236, 2.0000, -0.1708, -1.6180, 0.8944, -0.3820, //
0.3820, -0.8944, 1.6180, 0.1708, -2.0000, 0.7236, //
-0.2764, 0.6180, -0.8944, 2.0000, 1.1708, -2.6180, //
0.5000, -1.1056, 1.5279, -2.8944, 10.4721, -8.5000;
// multiply by -1 since the cheb points have a phase shift wrt Trefethen
// This was verified with chebfun
expected = -expected;
Matrix actual = Chebyshev2::DifferentiationMatrix(N);
EXPECT(assert_equal((Matrix)expected, actual, 1e-4));
}
// test function for CalculateWeights and DerivativeWeights
double f(double x) {
// return 3*(x**3) - 2*(x**2) + 5*x - 11
return 3.0 * pow(x, 3) - 2.0 * pow(x, 2) + 5.0 * x - 11;
}
// its derivative
double fprime(double x) {
// return 9*(x**2) - 4*(x) + 5
return 9.0 * pow(x, 2) - 4.0 * x + 5.0;
}
//******************************************************************************
TEST(Chebyshev2, CalculateWeights) {
Eigen::Matrix<double, -1, 1> fvals(N);
for (size_t i = 0; i < N; i++) {
fvals(i) = f(Chebyshev2::Point(N, i));
}
double x1 = 0.7, x2 = -0.376;
Weights weights1 = Chebyshev2::CalculateWeights(N, x1);
Weights weights2 = Chebyshev2::CalculateWeights(N, x2);
EXPECT_DOUBLES_EQUAL(f(x1), weights1 * fvals, 1e-8);
EXPECT_DOUBLES_EQUAL(f(x2), weights2 * fvals, 1e-8);
}
TEST(Chebyshev2, CalculateWeights2) {
double a = 0, b = 10, x1 = 7, x2 = 4.12;
Eigen::Matrix<double, -1, 1> fvals(N);
for (size_t i = 0; i < N; i++) {
fvals(i) = f(Chebyshev2::Point(N, i, a, b));
}
Weights weights1 = Chebyshev2::CalculateWeights(N, x1, a, b);
EXPECT_DOUBLES_EQUAL(f(x1), weights1 * fvals, 1e-8);
Weights weights2 = Chebyshev2::CalculateWeights(N, x2, a, b);
double expected2 = f(x2); // 185.454784
double actual2 = weights2 * fvals;
EXPECT_DOUBLES_EQUAL(expected2, actual2, 1e-8);
}
TEST(Chebyshev2, DerivativeWeights) {
Eigen::Matrix<double, -1, 1> fvals(N);
for (size_t i = 0; i < N; i++) {
fvals(i) = f(Chebyshev2::Point(N, i));
}
double x1 = 0.7, x2 = -0.376, x3 = 0.0;
Weights dWeights1 = Chebyshev2::DerivativeWeights(N, x1);
EXPECT_DOUBLES_EQUAL(fprime(x1), dWeights1 * fvals, 1e-9);
Weights dWeights2 = Chebyshev2::DerivativeWeights(N, x2);
EXPECT_DOUBLES_EQUAL(fprime(x2), dWeights2 * fvals, 1e-9);
Weights dWeights3 = Chebyshev2::DerivativeWeights(N, x3);
EXPECT_DOUBLES_EQUAL(fprime(x3), dWeights3 * fvals, 1e-9);
// test if derivative calculation and cheb point is correct
double x4 = Chebyshev2::Point(N, 3);
Weights dWeights4 = Chebyshev2::DerivativeWeights(N, x4);
EXPECT_DOUBLES_EQUAL(fprime(x4), dWeights4 * fvals, 1e-9);
}
TEST(Chebyshev2, DerivativeWeights2) {
double x1 = 5, x2 = 4.12, a = 0, b = 10;
Eigen::Matrix<double, -1, 1> fvals(N);
for (size_t i = 0; i < N; i++) {
fvals(i) = f(Chebyshev2::Point(N, i, a, b));
}
Weights dWeights1 = Chebyshev2::DerivativeWeights(N, x1, a, b);
EXPECT_DOUBLES_EQUAL(fprime(x1), dWeights1 * fvals, 1e-8);
Weights dWeights2 = Chebyshev2::DerivativeWeights(N, x2, a, b);
EXPECT_DOUBLES_EQUAL(fprime(x2), dWeights2 * fvals, 1e-8);
// test if derivative calculation and cheb point is correct
double x3 = Chebyshev2::Point(N, 3, a, b);
Weights dWeights3 = Chebyshev2::DerivativeWeights(N, x3, a, b);
EXPECT_DOUBLES_EQUAL(fprime(x3), dWeights3 * fvals, 1e-8);
}
//******************************************************************************
// Check two different ways to calculate the derivative weights
TEST(Chebyshev2, DerivativeWeightsDifferentiationMatrix) {
const size_t N6 = 6;
double x1 = 0.311;
Matrix D6 = Chebyshev2::DifferentiationMatrix(N6);
Weights expected = Chebyshev2::CalculateWeights(N6, x1) * D6;
Weights actual = Chebyshev2::DerivativeWeights(N6, x1);
EXPECT(assert_equal(expected, actual, 1e-12));
double a = -3, b = 8, x2 = 5.05;
Matrix D6_2 = Chebyshev2::DifferentiationMatrix(N6, a, b);
Weights expected1 = Chebyshev2::CalculateWeights(N6, x2, a, b) * D6_2;
Weights actual1 = Chebyshev2::DerivativeWeights(N6, x2, a, b);
EXPECT(assert_equal(expected1, actual1, 1e-12));
}
//******************************************************************************
// Check two different ways to calculate the derivative weights
TEST(Chebyshev2, DerivativeWeights6) {
const size_t N6 = 6;
Matrix D6 = Chebyshev2::DifferentiationMatrix(N6);
Chebyshev2::Parameters x = Chebyshev2::Points(N6); // ramp with slope 1
EXPECT(assert_equal(Vector::Ones(N6), Vector(D6 * x)));
}
//******************************************************************************
// Check two different ways to calculate the derivative weights
TEST(Chebyshev2, DerivativeWeights7) {
const size_t N7 = 7;
Matrix D7 = Chebyshev2::DifferentiationMatrix(N7);
Chebyshev2::Parameters x = Chebyshev2::Points(N7); // ramp with slope 1
EXPECT(assert_equal(Vector::Ones(N7), Vector(D7 * x)));
}
//******************************************************************************
// Check derivative in two different ways: numerical and using D on f
Vector6 f3_at_6points = (Vector6() << 4, 2, 6, 2, 4, 3).finished();
double proxy3(double x) {
return Chebyshev2::EvaluationFunctor(6, x)(f3_at_6points);
}
TEST(Chebyshev2, Derivative6) {
// Check Derivative evaluation at point x=0.2
// calculate expected values by numerical derivative of synthesis
const double x = 0.2;
Matrix numeric_dTdx = numericalDerivative11<double, double>(proxy3, x);
// Calculate derivatives at Chebyshev points using D3, interpolate
Matrix D6 = Chebyshev2::DifferentiationMatrix(6);
Vector derivative_at_points = D6 * f3_at_6points;
Chebyshev2::EvaluationFunctor fx(6, x);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), fx(derivative_at_points), 1e-8);
// Do directly
Chebyshev2::DerivativeFunctor dfdx(6, x);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), dfdx(f3_at_6points), 1e-8);
}
//******************************************************************************
// Assert that derivative also works in non-standard interval [0,3]
double proxy4(double x) {
return Chebyshev2::EvaluationFunctor(6, x, 0, 3)(f3_at_6points);
}
TEST(Chebyshev2, Derivative6_03) {
// Check Derivative evaluation at point x=0.2, in interval [0,3]
// calculate expected values by numerical derivative of synthesis
const double x = 0.2;
Matrix numeric_dTdx = numericalDerivative11<double, double>(proxy4, x);
// Calculate derivatives at Chebyshev points using D3, interpolate
Matrix D6 = Chebyshev2::DifferentiationMatrix(6, 0, 3);
Vector derivative_at_points = D6 * f3_at_6points;
Chebyshev2::EvaluationFunctor fx(6, x, 0, 3);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), fx(derivative_at_points), 1e-8);
// Do directly
Chebyshev2::DerivativeFunctor dfdx(6, x, 0, 3);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), dfdx(f3_at_6points), 1e-8);
}
//******************************************************************************
// Test VectorDerivativeFunctor
TEST(Chebyshev2, VectorDerivativeFunctor) {
const size_t N = 3, M = 2;
const double x = 0.2;
using VecD = Chebyshev2::VectorDerivativeFunctor<M>;
VecD fx(N, x, 0, 3);
ParameterMatrix<M> X(N);
Matrix actualH(M, M * N);
EXPECT(assert_equal(Vector::Zero(M), (Vector)fx(X, actualH), 1e-8));
// Test Jacobian
Matrix expectedH = numericalDerivative11<Vector2, ParameterMatrix<M>, M * N>(
boost::bind(&VecD::operator(), fx, _1, boost::none), X);
EXPECT(assert_equal(expectedH, actualH, 1e-7));
}
//******************************************************************************
// Test VectorDerivativeFunctor with polynomial function
TEST(Chebyshev2, VectorDerivativeFunctor2) {
const size_t N = 64, M = 1, T = 15;
using VecD = Chebyshev2::VectorDerivativeFunctor<M>;
const Vector points = Chebyshev2::Points(N, 0, T);
// Assign the parameter matrix
Vector values(N);
for (size_t i = 0; i < N; ++i) {
values(i) = f(points(i));
}
ParameterMatrix<M> X(values);
// Evaluate the derivative at the chebyshev points using
// VectorDerivativeFunctor.
for (size_t i = 0; i < N; ++i) {
VecD d(N, points(i), 0, T);
Vector1 Dx = d(X);
EXPECT_DOUBLES_EQUAL(fprime(points(i)), Dx(0), 1e-6);
}
// Test Jacobian at the first chebyshev point.
Matrix actualH(M, M * N);
VecD vecd(N, points(0), 0, T);
vecd(X, actualH);
Matrix expectedH = numericalDerivative11<Vector1, ParameterMatrix<M>, M * N>(
boost::bind(&VecD::operator(), vecd, _1, boost::none), X);
EXPECT(assert_equal(expectedH, actualH, 1e-6));
}
//******************************************************************************
// Test ComponentDerivativeFunctor
TEST(Chebyshev2, ComponentDerivativeFunctor) {
const size_t N = 6, M = 2;
const double x = 0.2;
using CompFunc = Chebyshev2::ComponentDerivativeFunctor<M>;
size_t row = 1;
CompFunc fx(N, row, x, 0, 3);
ParameterMatrix<M> X(N);
Matrix actualH(1, M * N);
EXPECT_DOUBLES_EQUAL(0, fx(X, actualH), 1e-8);
Matrix expectedH = numericalDerivative11<double, ParameterMatrix<M>, M * N>(
boost::bind(&CompFunc::operator(), fx, _1, boost::none), X);
EXPECT(assert_equal(expectedH, actualH, 1e-7));
}
//******************************************************************************
TEST(Chebyshev2, IntegralWeights) {
const size_t N7 = 7;
Vector actual = Chebyshev2::IntegrationWeights(N7);
Vector expected = (Vector(N7) << 0.0285714285714286, 0.253968253968254,
0.457142857142857, 0.520634920634921, 0.457142857142857,
0.253968253968254, 0.0285714285714286)
.finished();
EXPECT(assert_equal(expected, actual));
const size_t N8 = 8;
Vector actual2 = Chebyshev2::IntegrationWeights(N8);
Vector expected2 = (Vector(N8) << 0.0204081632653061, 0.190141007218208,
0.352242423718159, 0.437208405798326, 0.437208405798326,
0.352242423718159, 0.190141007218208, 0.0204081632653061)
.finished();
EXPECT(assert_equal(expected2, actual2));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************

View File

@ -0,0 +1,254 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testFourier.cpp
* @date July 4, 2020
* @author Frank Dellaert, Varun Agrawal
* @brief Unit tests for Fourier Basis Decompositions with Expressions
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/basis/FitBasis.h>
#include <gtsam/basis/Fourier.h>
#include <gtsam/nonlinear/factorTesting.h>
using namespace std;
using namespace gtsam;
auto model = noiseModel::Unit::Create(1);
// Coefficients for testing, respectively 3 and 7 parameter Fourier basis.
// They correspond to best approximation of TestFunction(x)
const Vector k3Coefficients = (Vector3() << 1.5661, 1.2717, 1.2717).finished();
const Vector7 k7Coefficients =
(Vector7() << 1.5661, 1.2717, 1.2717, -0.0000, 0.5887, -0.0943, 0.0943)
.finished();
// The test-function used below
static double TestFunction(double x) { return exp(sin(x) + cos(x)); }
//******************************************************************************
TEST(Basis, BasisEvaluationFunctor) {
// fx(0) takes coefficients c to calculate the value f(c;x==0)
FourierBasis::EvaluationFunctor fx(3, 0);
EXPECT_DOUBLES_EQUAL(k3Coefficients[0] + k3Coefficients[1],
fx(k3Coefficients), 1e-9);
}
//******************************************************************************
TEST(Basis, BasisEvaluationFunctorDerivative) {
// If we give the H argument, we get the derivative of fx(0) wrpt coefficients
// Needs to be Matrix so it can be used by OptionalJacobian.
Matrix H(1, 3);
FourierBasis::EvaluationFunctor fx(3, 0);
EXPECT_DOUBLES_EQUAL(k3Coefficients[0] + k3Coefficients[1],
fx(k3Coefficients, H), 1e-9);
Matrix13 expectedH(1, 1, 0);
EXPECT(assert_equal(expectedH, H));
}
//******************************************************************************
TEST(Basis, Manual) {
const size_t N = 3;
// We will create a linear factor graph
GaussianFactorGraph graph;
// We create an unknown Vector expression for the coefficients
Key key(1);
// We will need values below to test the Jacobians
Values values;
values.insert<Vector>(key, Vector::Zero(N)); // value does not really matter
// At 16 different samples points x, check Predict_ expression
for (size_t i = 0; i < 16; i++) {
const double x = i * M_PI / 8;
const double desiredValue = TestFunction(x);
// Manual JacobianFactor
Matrix A(1, N);
A << 1, cos(x), sin(x);
Vector b(1);
b << desiredValue;
JacobianFactor linearFactor(key, A, b);
graph.add(linearFactor);
// Create factor to predict value at x
EvaluationFactor<FourierBasis> predictFactor(key, desiredValue, model, N,
x);
// Check expression Jacobians
EXPECT_CORRECT_FACTOR_JACOBIANS(predictFactor, values, 1e-5, 1e-9);
auto linearizedFactor = predictFactor.linearize(values);
auto linearizedJacobianFactor =
boost::dynamic_pointer_cast<JacobianFactor>(linearizedFactor);
CHECK(linearizedJacobianFactor); // makes sure it's indeed a JacobianFactor
EXPECT(assert_equal(linearFactor, *linearizedJacobianFactor, 1e-9));
}
// Solve linear graph
VectorValues actual = graph.optimize();
EXPECT(assert_equal((Vector)k3Coefficients, actual.at(key), 1e-4));
}
//******************************************************************************
TEST(Basis, EvaluationFactor) {
// Check fitting a function with a 7-parameter Fourier basis
// Create linear factor graph
NonlinearFactorGraph graph;
Key key(1);
for (size_t i = 0; i < 16; i++) {
double x = i * M_PI / 8, desiredValue = TestFunction(x);
graph.emplace_shared<EvaluationFactor<FourierBasis>>(key, desiredValue,
model, 7, x);
}
// Solve FourierFactorGraph
Values values;
values.insert<Vector>(key, Vector::Zero(7));
GaussianFactorGraph::shared_ptr lfg = graph.linearize(values);
VectorValues actual = lfg->optimize();
EXPECT(assert_equal((Vector)k7Coefficients, actual.at(key), 1e-4));
}
//******************************************************************************
TEST(Basis, WeightMatrix) {
// The WeightMatrix creates an m*n matrix, where m is the number of sample
// points, and n is the number of parameters.
Matrix expected(2, 3);
expected.row(0) << 1, cos(1), sin(1);
expected.row(1) << 1, cos(2), sin(2);
Vector2 X(1, 2);
Matrix actual = FourierBasis::WeightMatrix(3, X);
EXPECT(assert_equal(expected, actual, 1e-9));
}
//******************************************************************************
TEST(Basis, Decomposition) {
// Create example sequence
Sequence sequence;
for (size_t i = 0; i < 16; i++) {
double x = i * M_PI / 8, y = TestFunction(x);
sequence[x] = y;
}
// Do Fourier Decomposition
FitBasis<FourierBasis> actual(sequence, model, 3);
// Check
EXPECT(assert_equal((Vector)k3Coefficients, actual.parameters(), 1e-4));
}
//******************************************************************************
// Check derivative in two different ways: numerical and using D on f
double proxy(double x) {
return FourierBasis::EvaluationFunctor(7, x)(k7Coefficients);
}
TEST(Basis, Derivative7) {
// Check Derivative evaluation at point x=0.2
// Calculate expected values by numerical derivative of proxy.
const double x = 0.2;
Matrix numeric_dTdx = numericalDerivative11<double, double>(proxy, x);
// Calculate derivatives at Chebyshev points using D7, interpolate
Matrix D7 = FourierBasis::DifferentiationMatrix(7);
Vector derivativeCoefficients = D7 * k7Coefficients;
FourierBasis::EvaluationFunctor fx(7, x);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), fx(derivativeCoefficients), 1e-8);
// Do directly
FourierBasis::DerivativeFunctor dfdx(7, x);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), dfdx(k7Coefficients), 1e-8);
}
//******************************************************************************
TEST(Basis, VecDerivativeFunctor) {
using DotShape = typename FourierBasis::VectorDerivativeFunctor<2>;
const size_t N = 3;
// MATLAB example, Dec 27 2019, commit 014eded5
double h = 2 * M_PI / 16;
Vector2 dotShape(0.5556, -0.8315); // at h/2
DotShape dotShapeFunction(N, h / 2);
Matrix23 theta_mat = (Matrix32() << 0, 0, 0.7071, 0.7071, 0.7071, -0.7071)
.finished()
.transpose();
ParameterMatrix<2> theta(theta_mat);
EXPECT(assert_equal(Vector(dotShape), dotShapeFunction(theta), 1e-4));
}
//******************************************************************************
// Suppose we want to parameterize a periodic function with function values at
// specific times, rather than coefficients. Can we do it? This would be a
// generalization of the Fourier transform, and constitute a "pseudo-spectral"
// parameterization. One way to do this is to establish hard constraints that
// express the relationship between the new parameters and the coefficients.
// For example, below I'd like the parameters to be the function values at
// X = {0.1,0.2,0.3}, rather than a 3-vector of coefficients.
// Because the values f(X) = at these points can be written as f(X) = W(X)*c,
// we can simply express the coefficents c as c=inv(W(X))*f, which is a
// generalized Fourier transform. That also means we can create factors with the
// unknown f-values, as done manually below.
TEST(Basis, PseudoSpectral) {
// We will create a linear factor graph
GaussianFactorGraph graph;
const size_t N = 3;
const Key key(1);
// The correct values at X = {0.1,0.2,0.3} are simply W*c
const Vector X = (Vector3() << 0.1, 0.2, 0.3).finished();
const Matrix W = FourierBasis::WeightMatrix(N, X);
const Vector expected = W * k3Coefficients;
// Check those values are indeed correct values of Fourier approximation
using Eval = FourierBasis::EvaluationFunctor;
EXPECT_DOUBLES_EQUAL(Eval(N, 0.1)(k3Coefficients), expected(0), 1e-9);
EXPECT_DOUBLES_EQUAL(Eval(N, 0.2)(k3Coefficients), expected(1), 1e-9);
EXPECT_DOUBLES_EQUAL(Eval(N, 0.3)(k3Coefficients), expected(2), 1e-9);
// Calculate "inverse Fourier transform" matrix
const Matrix invW = W.inverse();
// At 16 different samples points x, add a factor on fExpr
for (size_t i = 0; i < 16; i++) {
const double x = i * M_PI / 8;
const double desiredValue = TestFunction(x);
// Manual JacobianFactor
Matrix A(1, 3);
A << 1, cos(x), sin(x);
Vector b(1);
b << desiredValue;
JacobianFactor linearFactor(key, A * invW, b);
graph.add(linearFactor);
}
// Solve linear graph
VectorValues actual = graph.optimize();
EXPECT(assert_equal((Vector)expected, actual.at(key), 1e-4));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testParameterMatrix.cpp
* @date Sep 22, 2020
* @author Varun Agrawal, Frank Dellaert
* @brief Unit tests for ParameterMatrix.h
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/basis/BasisFactors.h>
#include <gtsam/basis/Chebyshev2.h>
#include <gtsam/basis/ParameterMatrix.h>
#include <gtsam/inference/Symbol.h>
using namespace std;
using namespace gtsam;
using Parameters = Chebyshev2::Parameters;
const size_t M = 2, N = 5;
//******************************************************************************
TEST(ParameterMatrix, Constructor) {
ParameterMatrix<2> actual1(3);
ParameterMatrix<2> expected1(Matrix::Zero(2, 3));
EXPECT(assert_equal(expected1, actual1));
ParameterMatrix<2> actual2(Matrix::Ones(2, 3));
ParameterMatrix<2> expected2(Matrix::Ones(2, 3));
EXPECT(assert_equal(expected2, actual2));
EXPECT(assert_equal(expected2.matrix(), actual2.matrix()));
}
//******************************************************************************
TEST(ParameterMatrix, Dimensions) {
ParameterMatrix<M> params(N);
EXPECT_LONGS_EQUAL(params.rows(), M);
EXPECT_LONGS_EQUAL(params.cols(), N);
EXPECT_LONGS_EQUAL(params.dim(), M * N);
}
//******************************************************************************
TEST(ParameterMatrix, Getters) {
ParameterMatrix<M> params(N);
Matrix expectedMatrix = Matrix::Zero(2, 5);
EXPECT(assert_equal(expectedMatrix, params.matrix()));
Matrix expectedMatrixTranspose = Matrix::Zero(5, 2);
EXPECT(assert_equal(expectedMatrixTranspose, params.transpose()));
ParameterMatrix<M> p2(Matrix::Ones(M, N));
Vector expectedRowVector = Vector::Ones(N);
for (size_t r = 0; r < M; ++r) {
EXPECT(assert_equal(p2.row(r), expectedRowVector));
}
ParameterMatrix<M> p3(2 * Matrix::Ones(M, N));
Vector expectedColVector = 2 * Vector::Ones(M);
for (size_t c = 0; c < M; ++c) {
EXPECT(assert_equal(p3.col(c), expectedColVector));
}
}
//******************************************************************************
TEST(ParameterMatrix, Setters) {
ParameterMatrix<M> params(Matrix::Zero(M, N));
Matrix expected = Matrix::Zero(M, N);
// row
params.row(0) = Vector::Ones(N);
expected.row(0) = Vector::Ones(N);
EXPECT(assert_equal(expected, params.matrix()));
// col
params.col(2) = Vector::Ones(M);
expected.col(2) = Vector::Ones(M);
EXPECT(assert_equal(expected, params.matrix()));
// setZero
params.setZero();
expected.setZero();
EXPECT(assert_equal(expected, params.matrix()));
}
//******************************************************************************
TEST(ParameterMatrix, Addition) {
ParameterMatrix<M> params(Matrix::Ones(M, N));
ParameterMatrix<M> expected(2 * Matrix::Ones(M, N));
// Add vector
EXPECT(assert_equal(expected, params + Vector::Ones(M * N)));
// Add another ParameterMatrix
ParameterMatrix<M> actual = params + ParameterMatrix<M>(Matrix::Ones(M, N));
EXPECT(assert_equal(expected, actual));
}
//******************************************************************************
TEST(ParameterMatrix, Subtraction) {
ParameterMatrix<M> params(2 * Matrix::Ones(M, N));
ParameterMatrix<M> expected(Matrix::Ones(M, N));
// Subtract vector
EXPECT(assert_equal(expected, params - Vector::Ones(M * N)));
// Subtract another ParameterMatrix
ParameterMatrix<M> actual = params - ParameterMatrix<M>(Matrix::Ones(M, N));
EXPECT(assert_equal(expected, actual));
}
//******************************************************************************
TEST(ParameterMatrix, Multiplication) {
ParameterMatrix<M> params(Matrix::Ones(M, N));
Matrix multiplier = 2 * Matrix::Ones(N, 2);
Matrix expected = 2 * N * Matrix::Ones(M, 2);
EXPECT(assert_equal(expected, params * multiplier));
}
//******************************************************************************
TEST(ParameterMatrix, VectorSpace) {
ParameterMatrix<M> params(Matrix::Ones(M, N));
// vector
EXPECT(assert_equal(Vector::Ones(M * N), params.vector()));
// identity
EXPECT(assert_equal(ParameterMatrix<M>::identity(),
ParameterMatrix<M>(Matrix::Zero(M, 0))));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************

View File

@ -147,113 +147,123 @@ public:
* G = F' * F - F' * E * P * E' * F
* g = F' * (b - E * P * E' * b)
* Fixed size version
*/
template<int N, int ND> // N = 2 or 3 (point dimension), ND is the camera dimension
static SymmetricBlockMatrix SchurComplement(
const std::vector< Eigen::Matrix<double, ZDim, ND>, Eigen::aligned_allocator< Eigen::Matrix<double, ZDim, ND> > >& Fs,
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
*/
template <int N,
int ND> // N = 2 or 3 (point dimension), ND is the camera dimension
static SymmetricBlockMatrix SchurComplement(
const std::vector<
Eigen::Matrix<double, ZDim, ND>,
Eigen::aligned_allocator<Eigen::Matrix<double, ZDim, ND>>>& Fs,
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
// a single point is observed in m cameras
size_t m = Fs.size();
// a single point is observed in m cameras
size_t m = Fs.size();
// Create a SymmetricBlockMatrix (augmented hessian, with extra row/column with info vector)
size_t M1 = ND * m + 1;
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, ND);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
// Create a SymmetricBlockMatrix (augmented hessian, with extra row/column with info vector)
size_t M1 = ND * m + 1;
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, ND);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera
const Eigen::Matrix<double, ZDim, ND>& Fi = Fs[i];
const auto FiT = Fi.transpose();
const Eigen::Matrix<double, ZDim, N> Ei_P = //
E.block(ZDim * i, 0, ZDim, N) * P;
const Eigen::Matrix<double, ZDim, ND>& Fi = Fs[i];
const auto FiT = Fi.transpose();
const Eigen::Matrix<double, ZDim, N> Ei_P = //
E.block(ZDim * i, 0, ZDim, N) * P;
// D = (Dx2) * ZDim
augmentedHessian.setOffDiagonalBlock(i, m, FiT * b.segment<ZDim>(ZDim * i) // F' * b
- FiT * (Ei_P * (E.transpose() * b))); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
// D = (Dx2) * ZDim
augmentedHessian.setOffDiagonalBlock(i, m, FiT * b.segment<ZDim>(ZDim * i) // F' * b
- FiT * (Ei_P * (E.transpose() * b))); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
augmentedHessian.setDiagonalBlock(i, FiT
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi));
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
augmentedHessian.setDiagonalBlock(i, FiT
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi));
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const Eigen::Matrix<double, ZDim, ND>& Fj = Fs[j];
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const Eigen::Matrix<double, ZDim, ND>& Fj = Fs[j];
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian.setOffDiagonalBlock(i, j, -FiT
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj));
}
} // end of for over cameras
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian.setOffDiagonalBlock(i, j, -FiT
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj));
}
} // end of for over cameras
augmentedHessian.diagonalBlock(m)(0, 0) += b.squaredNorm();
return augmentedHessian;
}
augmentedHessian.diagonalBlock(m)(0, 0) += b.squaredNorm();
return augmentedHessian;
}
/**
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
* G = F' * F - F' * E * P * E' * F
* g = F' * (b - E * P * E' * b)
* In this version, we allow for the case where the keys in the Jacobian are organized
* differently from the keys in the output SymmetricBlockMatrix
* In particular: each diagonal block of the Jacobian F captures 2 poses (useful for rolling shutter and extrinsic calibration)
* such that F keeps the block structure that makes the Schur complement trick fast.
* In this version, we allow for the case where the keys in the Jacobian are
* organized differently from the keys in the output SymmetricBlockMatrix In
* particular: each diagonal block of the Jacobian F captures 2 poses (useful
* for rolling shutter and extrinsic calibration) such that F keeps the block
* structure that makes the Schur complement trick fast.
*
* N = 2 or 3 (point dimension), ND is the Jacobian block dimension, NDD is
* the Hessian block dimension
*/
template<int N, int ND, int NDD> // N = 2 or 3 (point dimension), ND is the Jacobian block dimension, NDD is the Hessian block dimension
template <int N, int ND, int NDD>
static SymmetricBlockMatrix SchurComplementAndRearrangeBlocks(
const std::vector<Eigen::Matrix<double, ZDim, ND>,
Eigen::aligned_allocator<Eigen::Matrix<double, ZDim, ND> > >& Fs,
const std::vector<
Eigen::Matrix<double, ZDim, ND>,
Eigen::aligned_allocator<Eigen::Matrix<double, ZDim, ND>>>& Fs,
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b,
const KeyVector jacobianKeys, const KeyVector hessianKeys) {
const KeyVector& jacobianKeys, const KeyVector& hessianKeys) {
size_t nrNonuniqueKeys = jacobianKeys.size();
size_t nrUniqueKeys = hessianKeys.size();
// marginalize point: note - we reuse the standard SchurComplement function
SymmetricBlockMatrix augmentedHessian = SchurComplement<N, ND>(Fs,E,P,b);
// Marginalize point: note - we reuse the standard SchurComplement function.
SymmetricBlockMatrix augmentedHessian = SchurComplement<N, ND>(Fs, E, P, b);
// now pack into an Hessian factor
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
// Pack into an Hessian factor, allow space for b term.
std::vector<DenseIndex> dims(nrUniqueKeys + 1);
std::fill(dims.begin(), dims.end() - 1, NDD);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessianUniqueKeys;
// here we have to deal with the fact that some blocks may share the same keys
if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
// Deal with the fact that some blocks may share the same keys.
if (nrUniqueKeys == nrNonuniqueKeys) {
// Case when there is 1 calibration key per camera:
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
dims, Matrix(augmentedHessian.selfadjointView()));
} else { // if multiple cameras share a calibration we have to rearrange
// the results of the Schur complement matrix
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
} else {
// When multiple cameras share a calibration we have to rearrange
// the results of the Schur complement matrix.
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // includes b
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, NDD);
nonuniqueDims.back() = 1;
augmentedHessian = SymmetricBlockMatrix(
nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
// get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
// Get map from key to location in the new augmented Hessian matrix (the
// one including only unique keys).
std::map<Key, size_t> keyToSlotMap;
for (size_t k = 0; k < nrUniqueKeys; k++) {
keyToSlotMap[hessianKeys[k]] = k;
}
// initialize matrix to zero
// Initialize matrix to zero.
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
dims, Matrix::Zero(NDD * nrUniqueKeys + 1, NDD * nrUniqueKeys + 1));
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
// and populates an Hessian that only includes the unique keys (that is what we want to return)
// Add contributions for each key: note this loops over the hessian with
// nonUnique keys (augmentedHessian) and populates an Hessian that only
// includes the unique keys (that is what we want to return).
for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
Key key_i = jacobianKeys.at(i);
// update information vector
// Update information vector.
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
keyToSlotMap[key_i], nrUniqueKeys,
augmentedHessian.aboveDiagonalBlock(i, nrNonuniqueKeys));
// update blocks
// Update blocks.
for (size_t j = i; j < nrNonuniqueKeys; j++) { // cols
Key key_j = jacobianKeys.at(j);
if (i == j) {
@ -267,45 +277,20 @@ public:
} else {
augmentedHessianUniqueKeys.updateDiagonalBlock(
keyToSlotMap[key_i],
augmentedHessian.aboveDiagonalBlock(i, j)
+ augmentedHessian.aboveDiagonalBlock(i, j).transpose());
augmentedHessian.aboveDiagonalBlock(i, j) +
augmentedHessian.aboveDiagonalBlock(i, j).transpose());
}
}
}
}
// update bottom right element of the matrix
// Update bottom right element of the matrix.
augmentedHessianUniqueKeys.updateDiagonalBlock(
nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
}
return augmentedHessianUniqueKeys;
}
/**
* non-templated version of function above
*/
static SymmetricBlockMatrix SchurComplementAndRearrangeBlocks_3_12_6(
const std::vector<Eigen::Matrix<double,ZDim, 12>,
Eigen::aligned_allocator<Eigen::Matrix<double,ZDim,12> > >& Fs,
const Matrix& E, const Eigen::Matrix<double,3,3>& P, const Vector& b,
const KeyVector jacobianKeys, const KeyVector hessianKeys) {
return SchurComplementAndRearrangeBlocks<3,12,6>(Fs, E, P, b,
jacobianKeys,
hessianKeys);
}
/**
* non-templated version of function above
*/
static SymmetricBlockMatrix SchurComplementAndRearrangeBlocks_3_6_6(
const std::vector<Eigen::Matrix<double,ZDim, 6>,
Eigen::aligned_allocator<Eigen::Matrix<double,ZDim,6> > >& Fs,
const Matrix& E, const Eigen::Matrix<double,3,3>& P, const Vector& b,
const KeyVector jacobianKeys, const KeyVector hessianKeys) {
return SchurComplementAndRearrangeBlocks<3,6,6>(Fs, E, P, b,
jacobianKeys,
hessianKeys);
}
/**
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
* G = F' * F - F' * E * P * E' * F

View File

@ -185,9 +185,8 @@ TEST(CameraSet, SchurComplementAndRearrangeBlocks) {
// Actual
SymmetricBlockMatrix augmentedHessianBM =
Set::SchurComplementAndRearrangeBlocks_3_12_6(Fs, E, P, b,
nonuniqueKeys,
uniqueKeys);
Set::SchurComplementAndRearrangeBlocks<3, 12, 6>(
Fs, E, P, b, nonuniqueKeys, uniqueKeys);
Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView();
// Expected

View File

@ -110,7 +110,7 @@ class GTSAM_EXPORT FunctorizedFactor : public NoiseModelFactor1<T> {
bool equals(const NonlinearFactor &other, double tol = 1e-9) const override {
const FunctorizedFactor<R, T> *e =
dynamic_cast<const FunctorizedFactor<R, T> *>(&other);
return e && Base::equals(other, tol) &&
return e != nullptr && Base::equals(other, tol) &&
traits<R>::Equals(this->measured_, e->measured_, tol);
}
/// @}

View File

@ -20,8 +20,12 @@
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/basis/Basis.h>
#include <gtsam/basis/BasisFactors.h>
#include <gtsam/basis/Chebyshev2.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/FunctorizedFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/factorTesting.h>
using namespace std;
@ -60,7 +64,7 @@ class ProjectionFunctor {
if (H1) {
H1->resize(x.size(), A.size());
*H1 << I_3x3, I_3x3, I_3x3;
}
}
if (H2) *H2 = A;
return A * x;
}
@ -255,18 +259,148 @@ TEST(FunctorizedFactor, Lambda2) {
if (H1) {
H1->resize(x.size(), A.size());
*H1 << I_3x3, I_3x3, I_3x3;
}
}
if (H2) *H2 = A;
return A * x;
};
// FunctorizedFactor<Matrix> factor(key, measurement, model, lambda);
auto factor = MakeFunctorizedFactor2<Matrix, Vector>(keyA, keyx, measurement, model2, lambda);
auto factor = MakeFunctorizedFactor2<Matrix, Vector>(keyA, keyx, measurement,
model2, lambda);
Vector error = factor.evaluateError(A, x);
EXPECT(assert_equal(Vector::Zero(3), error, 1e-9));
}
const size_t N = 2;
//******************************************************************************
TEST(FunctorizedFactor, Print2) {
const size_t M = 1;
Vector measured = Vector::Ones(M) * 42;
auto model = noiseModel::Isotropic::Sigma(M, 1.0);
VectorEvaluationFactor<Chebyshev2, M> priorFactor(key, measured, model, N, 0);
string expected =
" keys = { X0 }\n"
" noise model: unit (1) \n"
"FunctorizedFactor(X0)\n"
" measurement: [\n"
" 42\n"
"]\n"
" noise model sigmas: 1\n";
EXPECT(assert_print_equal(expected, priorFactor));
}
//******************************************************************************
TEST(FunctorizedFactor, VectorEvaluationFactor) {
const size_t M = 4;
Vector measured = Vector::Zero(M);
auto model = noiseModel::Isotropic::Sigma(M, 1.0);
VectorEvaluationFactor<Chebyshev2, M> priorFactor(key, measured, model, N, 0);
NonlinearFactorGraph graph;
graph.add(priorFactor);
ParameterMatrix<M> stateMatrix(N);
Values initial;
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
//******************************************************************************
TEST(FunctorizedFactor, VectorComponentFactor) {
const int P = 4;
const size_t i = 2;
const double measured = 0.0, t = 3.0, a = 2.0, b = 4.0;
auto model = noiseModel::Isotropic::Sigma(1, 1.0);
VectorComponentFactor<Chebyshev2, P> controlPrior(key, measured, model, N, i,
t, a, b);
NonlinearFactorGraph graph;
graph.add(controlPrior);
ParameterMatrix<P> stateMatrix(N);
Values initial;
initial.insert<ParameterMatrix<P>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
//******************************************************************************
TEST(FunctorizedFactor, VecDerivativePrior) {
const size_t M = 4;
Vector measured = Vector::Zero(M);
auto model = noiseModel::Isotropic::Sigma(M, 1.0);
VectorDerivativeFactor<Chebyshev2, M> vecDPrior(key, measured, model, N, 0);
NonlinearFactorGraph graph;
graph.add(vecDPrior);
ParameterMatrix<M> stateMatrix(N);
Values initial;
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
//******************************************************************************
TEST(FunctorizedFactor, ComponentDerivativeFactor) {
const size_t M = 4;
double measured = 0;
auto model = noiseModel::Isotropic::Sigma(1, 1.0);
ComponentDerivativeFactor<Chebyshev2, M> controlDPrior(key, measured, model,
N, 0, 0);
NonlinearFactorGraph graph;
graph.add(controlDPrior);
Values initial;
ParameterMatrix<M> stateMatrix(N);
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -305,7 +305,7 @@ class SmartProjectionFactorP : public SmartProjectionFactor<CAMERA> {
// Build augmented Hessian (with last row/column being the information vector)
// Note: we need to get the augumented hessian wrt the unique keys in key_
SymmetricBlockMatrix augmentedHessianUniqueKeys =
Base::Cameras::SchurComplementAndRearrangeBlocks_3_6_6(
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 6, 6>(
Fs, E, P, b, nonUniqueKeys_, this->keys_);
return boost::make_shared < RegularHessianFactor<DimPose>

View File

@ -23,7 +23,6 @@ Vector ProjectionFactorRollingShutter::evaluateError(
const Pose3& pose_a, const Pose3& pose_b, const Point3& point,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
boost::optional<Matrix&> H3) const {
try {
Pose3 pose = interpolate<Pose3>(pose_a, pose_b, alpha_, H1, H2);
gtsam::Matrix Hprj;
@ -32,12 +31,10 @@ Vector ProjectionFactorRollingShutter::evaluateError(
gtsam::Matrix HbodySensor;
PinholeCamera<Cal3_S2> camera(
pose.compose(*body_P_sensor_, HbodySensor), *K_);
Point2 reprojectionError(
camera.project(point, Hprj, H3, boost::none) - measured_);
if (H1)
*H1 = Hprj * HbodySensor * (*H1);
if (H2)
*H2 = Hprj * HbodySensor * (*H2);
Point2 reprojectionError(camera.project(point, Hprj, H3, boost::none) -
measured_);
if (H1) *H1 = Hprj * HbodySensor * (*H1);
if (H2) *H2 = Hprj * HbodySensor * (*H2);
return reprojectionError;
} else {
PinholeCamera<Cal3_S2> camera(pose.compose(*body_P_sensor_), *K_);
@ -45,29 +42,23 @@ Vector ProjectionFactorRollingShutter::evaluateError(
}
} else {
PinholeCamera<Cal3_S2> camera(pose, *K_);
Point2 reprojectionError(
camera.project(point, Hprj, H3, boost::none) - measured_);
if (H1)
*H1 = Hprj * (*H1);
if (H2)
*H2 = Hprj * (*H2);
Point2 reprojectionError(camera.project(point, Hprj, H3, boost::none) -
measured_);
if (H1) *H1 = Hprj * (*H1);
if (H2) *H2 = Hprj * (*H2);
return reprojectionError;
}
} catch (CheiralityException& e) {
if (H1)
*H1 = Matrix::Zero(2, 6);
if (H2)
*H2 = Matrix::Zero(2, 6);
if (H3)
*H3 = Matrix::Zero(2, 3);
if (H1) *H1 = Matrix::Zero(2, 6);
if (H2) *H2 = Matrix::Zero(2, 6);
if (H3) *H3 = Matrix::Zero(2, 3);
if (verboseCheirality_)
std::cout << e.what() << ": Landmark "
<< DefaultKeyFormatter(this->key2()) << " moved behind camera "
<< DefaultKeyFormatter(this->key1()) << std::endl;
if (throwCheirality_)
throw CheiralityException(this->key2());
<< DefaultKeyFormatter(this->key2()) << " moved behind camera "
<< DefaultKeyFormatter(this->key1()) << std::endl;
if (throwCheirality_) throw CheiralityException(this->key2());
}
return Vector2::Constant(2.0 * K_->fx());
}
} //namespace gtsam
} // namespace gtsam

View File

@ -17,41 +17,47 @@
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/CalibratedCamera.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/CalibratedCamera.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <boost/optional.hpp>
namespace gtsam {
/**
* Non-linear factor for 2D projection measurement obtained using a rolling shutter camera. The calibration is known here.
* This version takes rolling shutter information into account as follows: consider two consecutive poses A and B,
* and a Point2 measurement taken starting at time A using a rolling shutter camera.
* Pose A has timestamp t_A, and Pose B has timestamp t_B. The Point2 measurement has timestamp t_p (with t_A <= t_p <= t_B)
* corresponding to the time of exposure of the row of the image the pixel belongs to.
* Let us define the alpha = (t_p - t_A) / (t_B - t_A), we will use the pose interpolated between A and B by
* the alpha to project the corresponding landmark to Point2.
* Non-linear factor for 2D projection measurement obtained using a rolling
* shutter camera. The calibration is known here. This version takes rolling
* shutter information into account as follows: consider two consecutive poses A
* and B, and a Point2 measurement taken starting at time A using a rolling
* shutter camera. Pose A has timestamp t_A, and Pose B has timestamp t_B. The
* Point2 measurement has timestamp t_p (with t_A <= t_p <= t_B) corresponding
* to the time of exposure of the row of the image the pixel belongs to. Let us
* define the alpha = (t_p - t_A) / (t_B - t_A), we will use the pose
* interpolated between A and B by the alpha to project the corresponding
* landmark to Point2.
* @addtogroup SLAM
*/
class ProjectionFactorRollingShutter : public NoiseModelFactor3<Pose3, Pose3,
Point3> {
class ProjectionFactorRollingShutter
: public NoiseModelFactor3<Pose3, Pose3, Point3> {
protected:
// Keep a copy of measurement and calibration for I/O
Point2 measured_; ///< 2D measurement
double alpha_; ///< interpolation parameter in [0,1] corresponding to the point2 measurement
Point2 measured_; ///< 2D measurement
double alpha_; ///< interpolation parameter in [0,1] corresponding to the
///< point2 measurement
boost::shared_ptr<Cal3_S2> K_; ///< shared pointer to calibration object
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
boost::optional<Pose3>
body_P_sensor_; ///< The pose of the sensor in the body frame
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default:
///< false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions
///< (default: false)
public:
/// shorthand for base class type
typedef NoiseModelFactor3<Pose3, Pose3, Point3> Base;
@ -66,72 +72,72 @@ class ProjectionFactorRollingShutter : public NoiseModelFactor3<Pose3, Pose3,
: measured_(0, 0),
alpha_(0),
throwCheirality_(false),
verboseCheirality_(false) {
}
verboseCheirality_(false) {}
/**
* Constructor
* @param measured is the 2-dimensional pixel location of point in the image (the measurement)
* @param measured is the 2-dimensional pixel location of point in the image
* (the measurement)
* @param alpha in [0,1] is the rolling shutter parameter for the measurement
* @param model is the noise model
* @param poseKey_a is the key of the first camera
* @param poseKey_b is the key of the second camera
* @param pointKey is the key of the landmark
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
* @param body_P_sensor is the transform from body to sensor frame (default
* identity)
*/
ProjectionFactorRollingShutter(const Point2& measured, double alpha,
const SharedNoiseModel& model, Key poseKey_a,
Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K,
boost::optional<Pose3> body_P_sensor =
boost::none)
ProjectionFactorRollingShutter(
const Point2& measured, double alpha, const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K,
boost::optional<Pose3> body_P_sensor = boost::none)
: Base(model, poseKey_a, poseKey_b, pointKey),
measured_(measured),
alpha_(alpha),
K_(K),
body_P_sensor_(body_P_sensor),
throwCheirality_(false),
verboseCheirality_(false) {
}
verboseCheirality_(false) {}
/**
* Constructor with exception-handling flags
* @param measured is the 2-dimensional pixel location of point in the image (the measurement)
* @param measured is the 2-dimensional pixel location of point in the image
* (the measurement)
* @param alpha in [0,1] is the rolling shutter parameter for the measurement
* @param model is the noise model
* @param poseKey_a is the key of the first camera
* @param poseKey_b is the key of the second camera
* @param pointKey is the key of the landmark
* @param K shared pointer to the constant calibration
* @param throwCheirality determines whether Cheirality exceptions are rethrown
* @param verboseCheirality determines whether exceptions are printed for Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default identity)
* @param throwCheirality determines whether Cheirality exceptions are
* rethrown
* @param verboseCheirality determines whether exceptions are printed for
* Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default
* identity)
*/
ProjectionFactorRollingShutter(const Point2& measured, double alpha,
const SharedNoiseModel& model, Key poseKey_a,
Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K,
bool throwCheirality, bool verboseCheirality,
boost::optional<Pose3> body_P_sensor =
boost::none)
ProjectionFactorRollingShutter(
const Point2& measured, double alpha, const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K, bool throwCheirality,
bool verboseCheirality,
boost::optional<Pose3> body_P_sensor = boost::none)
: Base(model, poseKey_a, poseKey_b, pointKey),
measured_(measured),
alpha_(alpha),
K_(K),
body_P_sensor_(body_P_sensor),
throwCheirality_(throwCheirality),
verboseCheirality_(verboseCheirality) {
}
verboseCheirality_(verboseCheirality) {}
/** Virtual destructor */
virtual ~ProjectionFactorRollingShutter() {
}
virtual ~ProjectionFactorRollingShutter() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast < gtsam::NonlinearFactor
> (gtsam::NonlinearFactor::shared_ptr(new This(*this)));
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
/**
@ -139,8 +145,9 @@ class ProjectionFactorRollingShutter : public NoiseModelFactor3<Pose3, Pose3,
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
void print(
const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "ProjectionFactorRollingShutter, z = ";
traits<Point2>::Print(measured_);
std::cout << " rolling shutter interpolation param = " << alpha_;
@ -150,71 +157,61 @@ class ProjectionFactorRollingShutter : public NoiseModelFactor3<Pose3, Pose3,
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol) && (alpha_ == e->alpha())
&& traits<Point2>::Equals(this->measured_, e->measured_, tol)
&& this->K_->equals(*e->K_, tol)
&& (this->throwCheirality_ == e->throwCheirality_)
&& (this->verboseCheirality_ == e->verboseCheirality_)
&& ((!body_P_sensor_ && !e->body_P_sensor_)
|| (body_P_sensor_ && e->body_P_sensor_
&& body_P_sensor_->equals(*e->body_P_sensor_)));
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const This* e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol) && (alpha_ == e->alpha()) &&
traits<Point2>::Equals(this->measured_, e->measured_, tol) &&
this->K_->equals(*e->K_, tol) &&
(this->throwCheirality_ == e->throwCheirality_) &&
(this->verboseCheirality_ == e->verboseCheirality_) &&
((!body_P_sensor_ && !e->body_P_sensor_) ||
(body_P_sensor_ && e->body_P_sensor_ &&
body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// Evaluate error h(x)-z and optionally derivatives
Vector evaluateError(const Pose3& pose_a, const Pose3& pose_b,
const Point3& point, boost::optional<Matrix&> H1 =
boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const;
Vector evaluateError(
const Pose3& pose_a, const Pose3& pose_b, const Point3& point,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const override;
/** return the measurement */
const Point2& measured() const {
return measured_;
}
const Point2& measured() const { return measured_; }
/** return the calibration object */
inline const boost::shared_ptr<Cal3_S2> calibration() const {
return K_;
}
inline const boost::shared_ptr<Cal3_S2> calibration() const { return K_; }
/** returns the rolling shutter interp param*/
inline double alpha() const {
return alpha_;
}
inline double alpha() const { return alpha_; }
/** return verbosity */
inline bool verboseCheirality() const {
return verboseCheirality_;
}
inline bool verboseCheirality() const { return verboseCheirality_; }
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const {
return throwCheirality_;
}
inline bool throwCheirality() const { return throwCheirality_; }
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(alpha_);
ar & BOOST_SERIALIZATION_NVP(K_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar& BOOST_SERIALIZATION_NVP(measured_);
ar& BOOST_SERIALIZATION_NVP(alpha_);
ar& BOOST_SERIALIZATION_NVP(K_);
ar& BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar& BOOST_SERIALIZATION_NVP(throwCheirality_);
ar& BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
/// traits
template<> struct traits<ProjectionFactorRollingShutter> : public Testable<
ProjectionFactorRollingShutter> {
};
template <>
struct traits<ProjectionFactorRollingShutter>
: public Testable<ProjectionFactorRollingShutter> {};
} //namespace gtsam
} // namespace gtsam

View File

@ -11,12 +11,14 @@
/**
* @file SmartProjectionPoseFactorRollingShutter.h
* @brief Smart projection factor on poses modeling rolling shutter effect with given readout time
* @brief Smart projection factor on poses modeling rolling shutter effect with
* given readout time
* @author Luca Carlone
*/
#pragma once
#include <gtsam/geometry/CameraSet.h>
#include <gtsam/slam/SmartProjectionFactor.h>
namespace gtsam {
@ -32,25 +34,28 @@ namespace gtsam {
*/
/**
* This factor optimizes two consecutive poses of the body assuming a rolling shutter model of the camera with given readout time.
* The factor requires that values contain (for each pixel observation) two consecutive camera poses
* from which the pixel observation pose can be interpolated.
* This factor optimizes two consecutive poses of the body assuming a rolling
* shutter model of the camera with given readout time. The factor requires that
* values contain (for each pixel observation) two consecutive camera poses from
* which the pixel observation pose can be interpolated.
* @addtogroup SLAM
*/
template<class CAMERA>
class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAMERA> {
template <class CAMERA>
class SmartProjectionPoseFactorRollingShutter
: public SmartProjectionFactor<CAMERA> {
public:
typedef typename CAMERA::CalibrationType CALIBRATION;
protected:
/// shared pointer to calibration object (one for each observation)
std::vector<boost::shared_ptr<CALIBRATION> > K_all_;
std::vector<boost::shared_ptr<CALIBRATION>> K_all_;
/// The keys of the pose of the body (with respect to an external world frame): two consecutive poses for each observation
/// The keys of the pose of the body (with respect to an external world
/// frame): two consecutive poses for each observation
std::vector<std::pair<Key, Key>> world_P_body_key_pairs_;
/// interpolation factor (one for each observation) to interpolate between pair of consecutive poses
/// interpolation factor (one for each observation) to interpolate between
/// pair of consecutive poses
std::vector<double> alphas_;
/// Pose of the camera in the body frame
@ -60,7 +65,7 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// shorthand for base class type
typedef SmartProjectionFactor<PinholePose<CALIBRATION> > Base;
typedef SmartProjectionFactor<PinholePose<CALIBRATION>> Base;
/// shorthand for this class
typedef SmartProjectionPoseFactorRollingShutter This;
@ -68,11 +73,15 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
static const int DimBlock = 12; ///< size of the variable stacking 2 poses from which the observation pose is interpolated
static const int DimBlock =
12; ///< size of the variable stacking 2 poses from which the observation
///< pose is interpolated
static const int DimPose = 6; ///< Pose3 dimension
static const int ZDim = 2; ///< Measurement dimension (Point2)
typedef Eigen::Matrix<double, ZDim, DimBlock> MatrixZD; // F blocks (derivatives wrt block of 2 poses)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
static const int ZDim = 2; ///< Measurement dimension (Point2)
typedef Eigen::Matrix<double, ZDim, DimBlock>
MatrixZD; // F blocks (derivatives wrt block of 2 poses)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>>
FBlocks; // vector of F blocks
/**
* Constructor
@ -82,25 +91,29 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
SmartProjectionPoseFactorRollingShutter(
const SharedNoiseModel& sharedNoiseModel,
const SmartProjectionParams& params = SmartProjectionParams())
: Base(sharedNoiseModel, params) {
}
: Base(sharedNoiseModel, params) {}
/** Virtual destructor */
~SmartProjectionPoseFactorRollingShutter() override = default;
/**
* add a new measurement, with 2 pose keys, interpolation factor, camera (intrinsic and extrinsic) calibration, and observed pixel.
* @param measured 2-dimensional location of the projection of a
* single landmark in a single view (the measurement), interpolated from the 2 poses
* @param world_P_body_key1 key corresponding to the first body poses (time <= time pixel is acquired)
* @param world_P_body_key2 key corresponding to the second body poses (time >= time pixel is acquired)
* @param alpha interpolation factor in [0,1], such that if alpha = 0 the interpolated pose is the same as world_P_body_key1
* add a new measurement, with 2 pose keys, interpolation factor, camera
* (intrinsic and extrinsic) calibration, and observed pixel.
* @param measured 2-dimensional location of the projection of a single
* landmark in a single view (the measurement), interpolated from the 2 poses
* @param world_P_body_key1 key corresponding to the first body poses (time <=
* time pixel is acquired)
* @param world_P_body_key2 key corresponding to the second body poses (time
* >= time pixel is acquired)
* @param alpha interpolation factor in [0,1], such that if alpha = 0 the
* interpolated pose is the same as world_P_body_key1
* @param K (fixed) camera intrinsic calibration
* @param body_P_sensor (fixed) camera extrinsic calibration
*/
void add(const Point2& measured, const Key& world_P_body_key1,
const Key& world_P_body_key2, const double& alpha,
const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor = Pose3::identity()) {
const boost::shared_ptr<CALIBRATION>& K,
const Pose3& body_P_sensor = Pose3::identity()) {
// store measurements in base class
this->measured_.push_back(measured);
@ -108,10 +121,13 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
world_P_body_key_pairs_.push_back(
std::make_pair(world_P_body_key1, world_P_body_key2));
// also store keys in the keys_ vector: these keys are assumed to be unique, so we avoid duplicates here
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1) == this->keys_.end())
// also store keys in the keys_ vector: these keys are assumed to be
// unique, so we avoid duplicates here
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1) ==
this->keys_.end())
this->keys_.push_back(world_P_body_key1); // add only unique keys
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2) == this->keys_.end())
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2) ==
this->keys_.end())
this->keys_.push_back(world_P_body_key2); // add only unique keys
// store interpolation factor
@ -125,12 +141,15 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
}
/**
* Variant of the previous "add" function in which we include multiple measurements
* Variant of the previous "add" function in which we include multiple
* measurements
* @param measurements vector of the 2m dimensional location of the projection
* of a single landmark in the m views (the measurements)
* @param world_P_body_key_pairs vector where the i-th element contains a pair of keys corresponding
* to the pair of poses from which the observation pose for the i0-th measurement can be interpolated
* @param alphas vector of interpolation params (in [0,1]), one for each measurement (in the same order)
* of a single landmark in the m views (the measurements)
* @param world_P_body_key_pairs vector where the i-th element contains a pair
* of keys corresponding to the pair of poses from which the observation pose
* for the i0-th measurement can be interpolated
* @param alphas vector of interpolation params (in [0,1]), one for each
* measurement (in the same order)
* @param Ks vector of (fixed) intrinsic calibration objects
* @param body_P_sensors vector of (fixed) extrinsic calibration objects
*/
@ -138,7 +157,7 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
const std::vector<double>& alphas,
const std::vector<boost::shared_ptr<CALIBRATION>>& Ks,
const std::vector<Pose3> body_P_sensors) {
const std::vector<Pose3>& body_P_sensors) {
assert(world_P_body_key_pairs.size() == measurements.size());
assert(world_P_body_key_pairs.size() == alphas.size());
assert(world_P_body_key_pairs.size() == Ks.size());
@ -150,20 +169,24 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
}
/**
* Variant of the previous "add" function in which we include multiple measurements
* with the same (intrinsic and extrinsic) calibration
* Variant of the previous "add" function in which we include multiple
* measurements with the same (intrinsic and extrinsic) calibration
* @param measurements vector of the 2m dimensional location of the projection
* of a single landmark in the m views (the measurements)
* @param world_P_body_key_pairs vector where the i-th element contains a pair of keys corresponding
* to the pair of poses from which the observation pose for the i0-th measurement can be interpolated
* @param alphas vector of interpolation params (in [0,1]), one for each measurement (in the same order)
* of a single landmark in the m views (the measurements)
* @param world_P_body_key_pairs vector where the i-th element contains a pair
* of keys corresponding to the pair of poses from which the observation pose
* for the i0-th measurement can be interpolated
* @param alphas vector of interpolation params (in [0,1]), one for each
* measurement (in the same order)
* @param K (fixed) camera intrinsic calibration (same for all measurements)
* @param body_P_sensor (fixed) camera extrinsic calibration (same for all measurements)
* @param body_P_sensor (fixed) camera extrinsic calibration (same for all
* measurements)
*/
void add(const Point2Vector& measurements,
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
const std::vector<double>& alphas,
const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor = Pose3::identity()) {
const boost::shared_ptr<CALIBRATION>& K,
const Pose3& body_P_sensor = Pose3::identity()) {
assert(world_P_body_key_pairs.size() == measurements.size());
assert(world_P_body_key_pairs.size() == alphas.size());
for (size_t i = 0; i < measurements.size(); i++) {
@ -173,39 +196,37 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
}
/// return the calibration object
inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const {
const std::vector<boost::shared_ptr<CALIBRATION>>& calibration() const {
return K_all_;
}
/// return (for each observation) the keys of the pair of poses from which we interpolate
const std::vector<std::pair<Key, Key>> world_P_body_key_pairs() const {
/// return (for each observation) the keys of the pair of poses from which we
/// interpolate
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs() const {
return world_P_body_key_pairs_;
}
/// return the interpolation factors alphas
const std::vector<double> alphas() const {
return alphas_;
}
const std::vector<double>& alphas() const { return alphas_; }
/// return the extrinsic camera calibration body_P_sensors
const std::vector<Pose3> body_P_sensors() const {
return body_P_sensors_;
}
const std::vector<Pose3>& body_P_sensors() const { return body_P_sensors_; }
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const override {
void print(
const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
for (size_t i = 0; i < K_all_.size(); i++) {
std::cout << "-- Measurement nr " << i << std::endl;
std::cout << " pose1 key: "
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
std::cout << " pose2 key: "
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
std::cout << " alpha: " << alphas_[i] << std::endl;
body_P_sensors_[i].print("extrinsic calibration:\n");
K_all_[i]->print("intrinsic calibration = ");
@ -216,41 +237,50 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const SmartProjectionPoseFactorRollingShutter<CAMERA>* e =
dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CAMERA>*>(&p);
dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CAMERA>*>(
&p);
double keyPairsEqual = true;
if(this->world_P_body_key_pairs_.size() == e->world_P_body_key_pairs().size()){
for(size_t k=0; k< this->world_P_body_key_pairs_.size(); k++){
if (this->world_P_body_key_pairs_.size() ==
e->world_P_body_key_pairs().size()) {
for (size_t k = 0; k < this->world_P_body_key_pairs_.size(); k++) {
const Key key1own = world_P_body_key_pairs_[k].first;
const Key key1e = e->world_P_body_key_pairs()[k].first;
const Key key2own = world_P_body_key_pairs_[k].second;
const Key key2e = e->world_P_body_key_pairs()[k].second;
if ( !(key1own == key1e) || !(key2own == key2e) ){
keyPairsEqual = false; break;
if (!(key1own == key1e) || !(key2own == key2e)) {
keyPairsEqual = false;
break;
}
}
}else{ keyPairsEqual = false; }
} else {
keyPairsEqual = false;
}
double extrinsicCalibrationEqual = true;
if(this->body_P_sensors_.size() == e->body_P_sensors().size()){
for(size_t i=0; i< this->body_P_sensors_.size(); i++){
if (!body_P_sensors_[i].equals(e->body_P_sensors()[i])){
extrinsicCalibrationEqual = false; break;
if (this->body_P_sensors_.size() == e->body_P_sensors().size()) {
for (size_t i = 0; i < this->body_P_sensors_.size(); i++) {
if (!body_P_sensors_[i].equals(e->body_P_sensors()[i])) {
extrinsicCalibrationEqual = false;
break;
}
}
}else{ extrinsicCalibrationEqual = false; }
} else {
extrinsicCalibrationEqual = false;
}
return e && Base::equals(p, tol) && K_all_ == e->calibration()
&& alphas_ == e->alphas() && keyPairsEqual && extrinsicCalibrationEqual;
return e && Base::equals(p, tol) && K_all_ == e->calibration() &&
alphas_ == e->alphas() && keyPairsEqual && extrinsicCalibrationEqual;
}
/**
* Compute jacobian F, E and error vector at a given linearization point
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Return arguments are the camera jacobians Fs (including the jacobian with
* respect to both body poses we interpolate from), the point Jacobian E,
* and the error vector b. Note that the jacobians are computed for a given point.
* @return Return arguments are the camera jacobians Fs (including the
* jacobian with respect to both body poses we interpolate from), the point
* Jacobian E, and the error vector b. Note that the jacobians are computed
* for a given point.
*/
void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b,
const Values& values) const {
@ -258,33 +288,38 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
throw("computeJacobiansWithTriangulatedPoint");
} else { // valid result: compute jacobians
size_t numViews = this->measured_.size();
E = Matrix::Zero(2 * numViews, 3); // a Point2 for each view (point jacobian)
E = Matrix::Zero(2 * numViews,
3); // a Point2 for each view (point jacobian)
b = Vector::Zero(2 * numViews); // a Point2 for each view
// intermediate Jacobians
Eigen::Matrix<double, ZDim, DimPose> dProject_dPoseCam;
Eigen::Matrix<double, DimPose, DimPose> dInterpPose_dPoseBody1,
dInterpPose_dPoseBody2, dPoseCam_dInterpPose;
dInterpPose_dPoseBody2, dPoseCam_dInterpPose;
Eigen::Matrix<double, ZDim, 3> Ei;
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
const Pose3& w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
const Pose3& w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
auto w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
auto w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
double interpolationFactor = alphas_[i];
// get interpolated pose:
const Pose3& w_P_body = interpolate<Pose3>(w_P_body1, w_P_body2,interpolationFactor, dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
const Pose3& body_P_cam = body_P_sensors_[i];
const Pose3& w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
auto w_P_body =
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor,
dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
auto body_P_cam = body_P_sensors_[i];
auto w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
PinholeCamera<CALIBRATION> camera(w_P_cam, *K_all_[i]);
// get jacobians and error vector for current measurement
Point2 reprojectionError_i = Point2(
camera.project(*this->result_, dProject_dPoseCam, Ei)
- this->measured_.at(i));
Point2 reprojectionError_i =
Point2(camera.project(*this->result_, dProject_dPoseCam, Ei) -
this->measured_.at(i));
Eigen::Matrix<double, ZDim, DimBlock> J; // 2 x 12
J.block(0, 0, ZDim, 6) = dProject_dPoseCam * dPoseCam_dInterpPose
* dInterpPose_dPoseBody1; // (2x6) * (6x6) * (6x6)
J.block(0, 6, ZDim, 6) = dProject_dPoseCam * dPoseCam_dInterpPose
* dInterpPose_dPoseBody2; // (2x6) * (6x6) * (6x6)
J.block(0, 0, ZDim, 6) =
dProject_dPoseCam * dPoseCam_dInterpPose *
dInterpPose_dPoseBody1; // (2x6) * (6x6) * (6x6)
J.block(0, 6, ZDim, 6) =
dProject_dPoseCam * dPoseCam_dInterpPose *
dInterpPose_dPoseBody2; // (2x6) * (6x6) * (6x6)
// fit into the output structures
Fs.push_back(J);
@ -296,37 +331,40 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
}
/// linearize and return a Hessianfactor that is an approximation of error(p)
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
const Values& values, const double lambda = 0.0, bool diagonalDamping =
false) const {
// we may have multiple observation sharing the same keys (due to the rolling shutter interpolation),
// hence the number of unique keys may be smaller than 2 * nrMeasurements
size_t nrUniqueKeys = this->keys_.size(); // note: by construction, keys_ only contains unique keys
boost::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor(
const Values& values, const double lambda = 0.0,
bool diagonalDamping = false) const {
// we may have multiple observation sharing the same keys (due to the
// rolling shutter interpolation), hence the number of unique keys may be
// smaller than 2 * nrMeasurements
size_t nrUniqueKeys =
this->keys_
.size(); // note: by construction, keys_ only contains unique keys
// Create structures for Hessian Factors
KeyVector js;
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
std::vector < Vector > gs(nrUniqueKeys);
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
std::vector<Vector> gs(nrUniqueKeys);
if (this->measured_.size() != this->cameras(values).size()) // 1 observation per interpolated camera
throw std::runtime_error("SmartProjectionPoseFactorRollingShutter: "
"measured_.size() inconsistent with input");
if (this->measured_.size() !=
this->cameras(values).size()) // 1 observation per interpolated camera
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"measured_.size() inconsistent with input");
// triangulate 3D point at given linearization point
this->triangulateSafe(this->cameras(values));
if (!this->result_) { // failed: return "empty/zero" Hessian
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
for (Matrix& m : Gs)
m = Matrix::Zero(DimPose, DimPose);
for (Vector& v : gs)
v = Vector::Zero(DimPose);
return boost::make_shared < RegularHessianFactor<DimPose>
> (this->keys_, Gs, gs, 0.0);
for (Matrix& m : Gs) m = Matrix::Zero(DimPose, DimPose);
for (Vector& v : gs) v = Vector::Zero(DimPose);
return boost::make_shared<RegularHessianFactor<DimPose>>(this->keys_,
Gs, gs, 0.0);
} else {
throw std::runtime_error("SmartProjectionPoseFactorRollingShutter: "
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
}
}
// compute Jacobian given triangulated 3D Point
@ -342,21 +380,23 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
Matrix3 P = Base::Cameras::PointCov(E, lambda, diagonalDamping);
// Collect all the key pairs: these are the keys that correspond to the blocks in Fs (on which we apply the Schur Complement)
// Collect all the key pairs: these are the keys that correspond to the
// blocks in Fs (on which we apply the Schur Complement)
KeyVector nonuniqueKeys;
for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) {
nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i).first);
nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i).second);
}
// Build augmented Hessian (with last row/column being the information vector)
// Note: we need to get the augumented hessian wrt the unique keys in key_
// Build augmented Hessian (with last row/column being the information
// vector) Note: we need to get the augumented hessian wrt the unique keys
// in key_
SymmetricBlockMatrix augmentedHessianUniqueKeys =
Base::Cameras::SchurComplementAndRearrangeBlocks_3_12_6(
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 12, 6>(
Fs, E, P, b, nonuniqueKeys, this->keys_);
return boost::make_shared < RegularHessianFactor<DimPose>
> (this->keys_, augmentedHessianUniqueKeys);
return boost::make_shared<RegularHessianFactor<DimPose>>(
this->keys_, augmentedHessianUniqueKeys);
}
/**
@ -365,7 +405,7 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
double error(const Values& values) const override {
if (this->active(values)) {
return this->totalReprojectionError(this->cameras(values));
} else { // else of active flag
} else { // else of active flag
return 0.0;
}
}
@ -385,10 +425,13 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
typename Base::Cameras cameras;
for (size_t i = 0; i < numViews; i++) { // for each measurement
const Pose3& w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
const Pose3& w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
const Pose3& w_P_body1 =
values.at<Pose3>(world_P_body_key_pairs_[i].first);
const Pose3& w_P_body2 =
values.at<Pose3>(world_P_body_key_pairs_[i].second);
double interpolationFactor = alphas_[i];
const Pose3& w_P_body = interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
const Pose3& w_P_body =
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
const Pose3& body_P_cam = body_P_sensors_[i];
const Pose3& w_P_cam = w_P_body.compose(body_P_cam);
cameras.emplace_back(w_P_cam, K_all_[i]);
@ -397,44 +440,46 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
}
/**
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for
* LM)
* @param values Values structure which must contain camera poses and
* extrinsic pose for this factor
* @return a Gaussian factor
*/
boost::shared_ptr<GaussianFactor> linearizeDamped(
const Values& values, const double lambda = 0.0) const {
// depending on flag set on construction we may linearize to different linear factors
// depending on flag set on construction we may linearize to different
// linear factors
switch (this->params_.linearizationMode) {
case HESSIAN:
return this->createHessianFactor(values, lambda);
default:
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: unknown linearization mode");
"SmartProjectionPoseFactorRollingShutter: unknown linearization "
"mode");
}
}
/// linearize
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const
override {
boost::shared_ptr<GaussianFactor> linearize(
const Values& values) const override {
return this->linearizeDamped(values);
}
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(K_all_);
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar& BOOST_SERIALIZATION_NVP(K_all_);
}
};
// end of class declaration
/// traits
template<class CAMERA>
struct traits<SmartProjectionPoseFactorRollingShutter<CAMERA> > :
public Testable<SmartProjectionPoseFactorRollingShutter<CAMERA> > {
};
template <class CAMERA>
struct traits<SmartProjectionPoseFactorRollingShutter<CAMERA>>
: public Testable<SmartProjectionPoseFactorRollingShutter<CAMERA>> {};
} // namespace gtsam

View File

@ -16,34 +16,33 @@
* @date July 2021
*/
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/geometry/Cal3DS2.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Point2.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
using namespace std::placeholders;
using namespace std;
using namespace gtsam;
// make a realistic calibration matrix
static double fov = 60; // degrees
static size_t w=640,h=480;
static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
static double fov = 60; // degrees
static size_t w = 640, h = 480;
static Cal3_S2::shared_ptr K(new Cal3_S2(fov, w, h));
// Create a noise model for the pixel error
static SharedNoiseModel model(noiseModel::Unit::Create(2));
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
using symbol_shorthand::T;
using symbol_shorthand::X;
// Convenience to define common variables across many tests
static Key poseKey1(X(1));
@ -51,74 +50,84 @@ static Key poseKey2(X(2));
static Key pointKey(L(1));
static double interp_params = 0.5;
static Point2 measurement(323.0, 240.0);
static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
Point3(0.25, -0.10, 1.0));
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, Constructor) {
ProjectionFactorRollingShutter factor(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K);
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, ConstructorWithTransform) {
TEST(ProjectionFactorRollingShutter, Constructor) {
ProjectionFactorRollingShutter factor(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor);
poseKey1, poseKey2, pointKey, K);
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, Equals ) {
{ // factors are equal
ProjectionFactorRollingShutter factor1(measurement, interp_params,
model, poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, interp_params,
model, poseKey1, poseKey2, pointKey, K);
TEST(ProjectionFactorRollingShutter, ConstructorWithTransform) {
ProjectionFactorRollingShutter factor(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, Equals) {
{ // factors are equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K);
CHECK(assert_equal(factor1, factor2));
}
{ // factors are NOT equal (keys are different)
ProjectionFactorRollingShutter factor1(measurement, interp_params,
model, poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, interp_params,
model, poseKey1, poseKey1, pointKey, K);
CHECK(!assert_equal(factor1, factor2)); // not equal
{ // factors are NOT equal (keys are different)
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey1, pointKey, K);
CHECK(!assert_equal(factor1, factor2)); // not equal
}
{ // factors are NOT equal (different interpolation)
ProjectionFactorRollingShutter factor1(measurement, 0.1,
model, poseKey1, poseKey1, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, 0.5,
model, poseKey1, poseKey2, pointKey, K);
CHECK(!assert_equal(factor1, factor2)); // not equal
{ // factors are NOT equal (different interpolation)
ProjectionFactorRollingShutter factor1(measurement, 0.1, model, poseKey1,
poseKey1, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, 0.5, model, poseKey1,
poseKey2, pointKey, K);
CHECK(!assert_equal(factor1, factor2)); // not equal
}
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, EqualsWithTransform ) {
{ // factors are equal
TEST(ProjectionFactorRollingShutter, EqualsWithTransform) {
{ // factors are equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor);
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor);
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
CHECK(assert_equal(factor1, factor2));
}
{ // factors are NOT equal
{ // factors are NOT equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor);
Pose3 body_P_sensor2(Rot3::RzRyRx(0.0, 0.0, 0.0), Point3(0.25, -0.10, 1.0)); // rotation different from body_P_sensor
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
Pose3 body_P_sensor2(
Rot3::RzRyRx(0.0, 0.0, 0.0),
Point3(0.25, -0.10, 1.0)); // rotation different from body_P_sensor
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor2);
poseKey1, poseKey2, pointKey, K,
body_P_sensor2);
CHECK(!assert_equal(factor1, factor2));
}
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, Error ) {
TEST(ProjectionFactorRollingShutter, Error) {
{
// Create the factor with a measurement that is 3 pixels off in x
// Camera pose corresponds to the first camera
double t = 0.0;
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
poseKey2, pointKey, K);
// Set the linearization point
Pose3 pose1(Rot3(), Point3(0,0,-6));
Pose3 pose2(Rot3(), Point3(0,0,-4));
Pose3 pose1(Rot3(), Point3(0, 0, -6));
Pose3 pose2(Rot3(), Point3(0, 0, -4));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
@ -134,11 +143,12 @@ TEST( ProjectionFactorRollingShutter, Error ) {
// Create the factor with a measurement that is 3 pixels off in x
// Camera pose is actually interpolated now
double t = 0.5;
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
poseKey2, pointKey, K);
// Set the linearization point
Pose3 pose1(Rot3(), Point3(0,0,-8));
Pose3 pose2(Rot3(), Point3(0,0,-4));
Pose3 pose1(Rot3(), Point3(0, 0, -8));
Pose3 pose2(Rot3(), Point3(0, 0, -4));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
@ -153,15 +163,16 @@ TEST( ProjectionFactorRollingShutter, Error ) {
{
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
@ -175,19 +186,20 @@ TEST( ProjectionFactorRollingShutter, Error ) {
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, ErrorWithTransform ) {
TEST(ProjectionFactorRollingShutter, ErrorWithTransform) {
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0.2,0.1));
PinholeCamera<Cal3_S2> camera(poseInterp*body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, body_P_sensor3);
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
pointKey, K, body_P_sensor3);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
@ -200,18 +212,19 @@ TEST( ProjectionFactorRollingShutter, ErrorWithTransform ) {
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, Jacobian ) {
TEST(ProjectionFactorRollingShutter, Jacobian) {
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
pointKey, K);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
@ -222,22 +235,25 @@ TEST( ProjectionFactorRollingShutter, Jacobian ) {
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
@ -245,19 +261,20 @@ TEST( ProjectionFactorRollingShutter, Jacobian ) {
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, JacobianWithTransform ) {
TEST(ProjectionFactorRollingShutter, JacobianWithTransform) {
// Create measurement by projecting 3D landmark
double t = 0.6;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0.2,0.1));
PinholeCamera<Cal3_S2> camera(poseInterp*body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, body_P_sensor3);
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
pointKey, K, body_P_sensor3);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
@ -268,22 +285,25 @@ TEST( ProjectionFactorRollingShutter, JacobianWithTransform ) {
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
@ -291,41 +311,48 @@ TEST( ProjectionFactorRollingShutter, JacobianWithTransform ) {
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, cheirality ) {
TEST(ProjectionFactorRollingShutter, cheirality) {
// Create measurement by projecting 3D landmark behind camera
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, -5.0); // 5 meters behind the camera
Point3 point(0.0, 0.0, -5.0); // 5 meters behind the camera
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
Point2 measured = Point2(0.0,0.0); // project would throw an exception
{ // check that exception is thrown if we set throwCheirality = true
Point2 measured = Point2(0.0, 0.0); // project would throw an exception
{ // check that exception is thrown if we set throwCheirality = true
bool throwCheirality = true;
bool verboseCheirality = true;
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, throwCheirality, verboseCheirality);
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K,
throwCheirality, verboseCheirality);
CHECK_EXCEPTION(factor.evaluateError(pose1, pose2, point),
CheiralityException);
}
{ // check that exception is NOT thrown if we set throwCheirality = false, and outputs are correct
bool throwCheirality = false; // default
bool verboseCheirality = false; // default
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, throwCheirality, verboseCheirality);
{ // check that exception is NOT thrown if we set throwCheirality = false,
// and outputs are correct
bool throwCheirality = false; // default
bool verboseCheirality = false; // default
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K,
throwCheirality, verboseCheirality);
// Use the factor to calculate the error
Matrix H1Actual, H2Actual, H3Actual;
Vector actualError(factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual));
Vector actualError(factor.evaluateError(pose1, pose2, point, H1Actual,
H2Actual, H3Actual));
// The expected error is zero
Vector expectedError = Vector2::Constant(2.0 * K->fx()); // this is what we return when point is behind camera
Vector expectedError = Vector2::Constant(
2.0 * K->fx()); // this is what we return when point is behind camera
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
CHECK(assert_equal(Matrix::Zero(2,6), H1Actual, 1e-5));
CHECK(assert_equal(Matrix::Zero(2,6), H2Actual, 1e-5));
CHECK(assert_equal(Matrix::Zero(2,3), H3Actual, 1e-5));
CHECK(assert_equal(Matrix::Zero(2, 6), H1Actual, 1e-5));
CHECK(assert_equal(Matrix::Zero(2, 6), H2Actual, 1e-5));
CHECK(assert_equal(Matrix::Zero(2, 3), H3Actual, 1e-5));
}
#else
{
@ -333,7 +360,8 @@ TEST( ProjectionFactorRollingShutter, cheirality ) {
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
@ -344,22 +372,25 @@ TEST( ProjectionFactorRollingShutter, cheirality ) {
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
std::placeholders::_3, boost::none, boost::none,
boost::none)),
pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
@ -368,8 +399,9 @@ TEST( ProjectionFactorRollingShutter, cheirality ) {
#endif
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -16,17 +16,19 @@
* @date July 2021
*/
#include "gtsam/slam/tests/smartFactorScenarios.h"
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/serializationTestHelpers.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
#include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
#include <boost/assign/std/map.hpp>
#include <iostream>
#include "gtsam/slam/tests/smartFactorScenarios.h"
#define DISABLE_TIMING
using namespace gtsam;
@ -39,8 +41,8 @@ static const double sigma = 0.1;
static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
using symbol_shorthand::X;
// tests data
static Symbol x1('X', 1);
@ -48,8 +50,8 @@ static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Symbol x4('X', 4);
static Symbol l0('L', 0);
static Pose3 body_P_sensor = Pose3(Rot3::Ypr(-0.1, 0.2, -0.2),
Point3(0.1, 0.0, 0.0));
static Pose3 body_P_sensor =
Pose3(Rot3::Ypr(-0.1, 0.2, -0.2), Point3(0.1, 0.0, 0.0));
static Point2 measurement1(323.0, 240.0);
static Point2 measurement2(200.0, 220.0);
@ -64,38 +66,39 @@ static double interp_factor3 = 0.5;
namespace vanillaPoseRS {
typedef PinholePose<Cal3_S2> Camera;
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
Pose3 interp_pose1 = interpolate<Pose3>(level_pose,pose_right,interp_factor1);
Pose3 interp_pose2 = interpolate<Pose3>(pose_right,pose_above,interp_factor2);
Pose3 interp_pose3 = interpolate<Pose3>(pose_above,level_pose,interp_factor3);
Pose3 interp_pose1 = interpolate<Pose3>(level_pose, pose_right, interp_factor1);
Pose3 interp_pose2 = interpolate<Pose3>(pose_right, pose_above, interp_factor2);
Pose3 interp_pose3 = interpolate<Pose3>(pose_above, level_pose, interp_factor3);
Camera cam1(interp_pose1, sharedK);
Camera cam2(interp_pose2, sharedK);
Camera cam3(interp_pose3, sharedK);
}
} // namespace vanillaPoseRS
LevenbergMarquardtParams lmParams;
typedef SmartProjectionPoseFactorRollingShutter< PinholePose<Cal3_S2> > SmartFactorRS;
typedef SmartProjectionPoseFactorRollingShutter<PinholePose<Cal3_S2>>
SmartFactorRS;
/* ************************************************************************* */
TEST( SmartProjectionPoseFactorRollingShutter, Constructor) {
TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactorRollingShutter, Constructor2) {
TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
SmartProjectionParams params;
params.setRankTolerance(rankTol);
SmartFactorRS factor1(model, params);
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactorRollingShutter, add) {
TEST(SmartProjectionPoseFactorRollingShutter, add) {
using namespace vanillaPose;
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor, sharedK, body_P_sensor);
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactorRollingShutter, Equals ) {
TEST(SmartProjectionPoseFactorRollingShutter, Equals) {
using namespace vanillaPose;
// create fake measurements
@ -104,10 +107,10 @@ TEST( SmartProjectionPoseFactorRollingShutter, Equals ) {
measurements.push_back(measurement2);
measurements.push_back(measurement3);
std::vector<std::pair<Key,Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1,x2));
key_pairs.push_back(std::make_pair(x2,x3));
key_pairs.push_back(std::make_pair(x3,x4));
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x4));
std::vector<boost::shared_ptr<Cal3_S2>> intrinsicCalibrations;
intrinsicCalibrations.push_back(sharedK);
@ -126,57 +129,67 @@ TEST( SmartProjectionPoseFactorRollingShutter, Equals ) {
// create by adding a batch of measurements with a bunch of calibrations
SmartFactorRS::shared_ptr factor2(new SmartFactorRS(model));
factor2->add(measurements, key_pairs, interp_factors, intrinsicCalibrations, extrinsicCalibrations);
factor2->add(measurements, key_pairs, interp_factors, intrinsicCalibrations,
extrinsicCalibrations);
// create by adding a batch of measurements with a single calibrations
SmartFactorRS::shared_ptr factor3(new SmartFactorRS(model));
factor3->add(measurements, key_pairs, interp_factors, sharedK, body_P_sensor);
{ // create equal factors and show equal returns true
{ // create equal factors and show equal returns true
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x3, interp_factor2, sharedK, body_P_sensor);
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
EXPECT(assert_equal(*factor1, *factor2));
EXPECT(assert_equal(*factor1, *factor3));
EXPECT(factor1->equals(*factor2));
EXPECT(factor1->equals(*factor3));
}
{ // create slightly different factors (different keys) and show equal returns false
{ // create slightly different factors (different keys) and show equal
// returns false
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x2, interp_factor2, sharedK, body_P_sensor); // different!
factor1->add(measurement2, x2, x2, interp_factor2, sharedK,
body_P_sensor); // different!
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
EXPECT(!assert_equal(*factor1, *factor2));
EXPECT(!assert_equal(*factor1, *factor3));
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
{ // create slightly different factors (different extrinsics) and show equal returns false
{ // create slightly different factors (different extrinsics) and show equal
// returns false
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x3, interp_factor2, sharedK, body_P_sensor*body_P_sensor); // different!
factor1->add(measurement2, x2, x3, interp_factor2, sharedK,
body_P_sensor * body_P_sensor); // different!
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
EXPECT(!assert_equal(*factor1, *factor2));
EXPECT(!assert_equal(*factor1, *factor3));
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
{ // create slightly different factors (different interp factors) and show equal returns false
{ // create slightly different factors (different interp factors) and show
// equal returns false
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x3, interp_factor1, sharedK, body_P_sensor); // different!
factor1->add(measurement2, x2, x3, interp_factor1, sharedK,
body_P_sensor); // different!
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
EXPECT(!assert_equal(*factor1, *factor2));
EXPECT(!assert_equal(*factor1, *factor3));
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
}
static const int DimBlock = 12; ///< size of the variable stacking 2 poses from which the observation pose is interpolated
static const int ZDim = 2; ///< Measurement dimension (Point2)
typedef Eigen::Matrix<double, ZDim, DimBlock> MatrixZD; // F blocks (derivatives wrt camera)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
static const int DimBlock = 12; ///< size of the variable stacking 2 poses from
///< which the observation pose is interpolated
static const int ZDim = 2; ///< Measurement dimension (Point2)
typedef Eigen::Matrix<double, ZDim, DimBlock>
MatrixZD; // F blocks (derivatives wrt camera)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>>
FBlocks; // vector of F blocks
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians ) {
TEST(SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians) {
using namespace vanillaPoseRS;
// Project two landmarks into two cameras
@ -188,7 +201,7 @@ TEST( SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians ) {
factor.add(level_uv, x1, x2, interp_factor1, sharedK, body_P_sensorId);
factor.add(level_uv_right, x2, x3, interp_factor2, sharedK, body_P_sensorId);
Values values; // it's a pose factor, hence these are poses
Values values; // it's a pose factor, hence these are poses
values.insert(x1, level_pose);
values.insert(x2, pose_right);
values.insert(x3, pose_above);
@ -200,41 +213,56 @@ TEST( SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians ) {
// Check triangulation
factor.triangulateSafe(factor.cameras(values));
TriangulationResult point = factor.point();
EXPECT(point.valid()); // check triangulated point is valid
EXPECT(assert_equal(landmark1, *point)); // check triangulation result matches expected 3D landmark
EXPECT(point.valid()); // check triangulated point is valid
EXPECT(assert_equal(
landmark1,
*point)); // check triangulation result matches expected 3D landmark
// Check Jacobians
// -- actual Jacobians
FBlocks actualFs;
Matrix actualE;
Vector actualb;
factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb, values);
EXPECT(actualE.rows() == 4); EXPECT(actualE.cols() == 3);
EXPECT(actualb.rows() == 4); EXPECT(actualb.cols() == 1);
factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb,
values);
EXPECT(actualE.rows() == 4);
EXPECT(actualE.cols() == 3);
EXPECT(actualb.rows() == 4);
EXPECT(actualb.cols() == 1);
EXPECT(actualFs.size() == 2);
// -- expected Jacobians from ProjectionFactorsRollingShutter
ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1, x2, l0, sharedK, body_P_sensorId);
ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1,
x2, l0, sharedK, body_P_sensorId);
Matrix expectedF11, expectedF12, expectedE1;
Vector expectedb1 = factor1.evaluateError(level_pose, pose_right, landmark1, expectedF11, expectedF12, expectedE1);
EXPECT(assert_equal( expectedF11, Matrix(actualFs[0].block(0,0,2,6)), 1e-5));
EXPECT(assert_equal( expectedF12, Matrix(actualFs[0].block(0,6,2,6)), 1e-5));
EXPECT(assert_equal( expectedE1, Matrix(actualE.block(0,0,2,3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus reprojectionError
EXPECT(assert_equal( expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
Vector expectedb1 = factor1.evaluateError(
level_pose, pose_right, landmark1, expectedF11, expectedF12, expectedE1);
EXPECT(
assert_equal(expectedF11, Matrix(actualFs[0].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF12, Matrix(actualFs[0].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE1, Matrix(actualE.block(0, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model, x2, x3, l0, sharedK, body_P_sensorId);
ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model,
x2, x3, l0, sharedK, body_P_sensorId);
Matrix expectedF21, expectedF22, expectedE2;
Vector expectedb2 = factor2.evaluateError(pose_right, pose_above, landmark1, expectedF21, expectedF22, expectedE2);
EXPECT(assert_equal( expectedF21, Matrix(actualFs[1].block(0,0,2,6)), 1e-5));
EXPECT(assert_equal( expectedF22, Matrix(actualFs[1].block(0,6,2,6)), 1e-5));
EXPECT(assert_equal( expectedE2, Matrix(actualE.block(2,0,2,3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus reprojectionError
EXPECT(assert_equal( expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
Vector expectedb2 = factor2.evaluateError(
pose_right, pose_above, landmark1, expectedF21, expectedF22, expectedE2);
EXPECT(
assert_equal(expectedF21, Matrix(actualFs[1].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF22, Matrix(actualFs[1].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE2, Matrix(actualE.block(2, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians ) {
TEST(SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians) {
// also includes non-identical extrinsic calibration
using namespace vanillaPoseRS;
@ -246,9 +274,10 @@ TEST( SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians ) {
SmartFactorRS factor(model);
factor.add(level_uv, x1, x2, interp_factor1, sharedK, body_P_sensorNonId);
factor.add(level_uv_right, x2, x3, interp_factor2, sharedK, body_P_sensorNonId);
factor.add(level_uv_right, x2, x3, interp_factor2, sharedK,
body_P_sensorNonId);
Values values; // it's a pose factor, hence these are poses
Values values; // it's a pose factor, hence these are poses
values.insert(x1, level_pose);
values.insert(x2, pose_right);
values.insert(x3, pose_above);
@ -256,7 +285,7 @@ TEST( SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians ) {
// Perform triangulation
factor.triangulateSafe(factor.cameras(values));
TriangulationResult point = factor.point();
EXPECT(point.valid()); // check triangulated point is valid
EXPECT(point.valid()); // check triangulated point is valid
Point3 landmarkNoisy = *point;
// Check Jacobians
@ -264,32 +293,48 @@ TEST( SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians ) {
FBlocks actualFs;
Matrix actualE;
Vector actualb;
factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb, values);
EXPECT(actualE.rows() == 4); EXPECT(actualE.cols() == 3);
EXPECT(actualb.rows() == 4); EXPECT(actualb.cols() == 1);
factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb,
values);
EXPECT(actualE.rows() == 4);
EXPECT(actualE.cols() == 3);
EXPECT(actualb.rows() == 4);
EXPECT(actualb.cols() == 1);
EXPECT(actualFs.size() == 2);
// -- expected Jacobians from ProjectionFactorsRollingShutter
ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1, x2, l0, sharedK, body_P_sensorNonId);
ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1,
x2, l0, sharedK, body_P_sensorNonId);
Matrix expectedF11, expectedF12, expectedE1;
Vector expectedb1 = factor1.evaluateError(level_pose, pose_right, landmarkNoisy, expectedF11, expectedF12, expectedE1);
EXPECT(assert_equal( expectedF11, Matrix(actualFs[0].block(0,0,2,6)), 1e-5));
EXPECT(assert_equal( expectedF12, Matrix(actualFs[0].block(0,6,2,6)), 1e-5));
EXPECT(assert_equal( expectedE1, Matrix(actualE.block(0,0,2,3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus reprojectionError
EXPECT(assert_equal( expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
Vector expectedb1 =
factor1.evaluateError(level_pose, pose_right, landmarkNoisy, expectedF11,
expectedF12, expectedE1);
EXPECT(
assert_equal(expectedF11, Matrix(actualFs[0].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF12, Matrix(actualFs[0].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE1, Matrix(actualE.block(0, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model, x2, x3, l0, sharedK, body_P_sensorNonId);
ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model,
x2, x3, l0, sharedK,
body_P_sensorNonId);
Matrix expectedF21, expectedF22, expectedE2;
Vector expectedb2 = factor2.evaluateError(pose_right, pose_above, landmarkNoisy, expectedF21, expectedF22, expectedE2);
EXPECT(assert_equal( expectedF21, Matrix(actualFs[1].block(0,0,2,6)), 1e-5));
EXPECT(assert_equal( expectedF22, Matrix(actualFs[1].block(0,6,2,6)), 1e-5));
EXPECT(assert_equal( expectedE2, Matrix(actualE.block(2,0,2,3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus reprojectionError
EXPECT(assert_equal( expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
Vector expectedb2 =
factor2.evaluateError(pose_right, pose_above, landmarkNoisy, expectedF21,
expectedF22, expectedE2);
EXPECT(
assert_equal(expectedF21, Matrix(actualFs[1].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF22, Matrix(actualFs[1].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE2, Matrix(actualE.block(2, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
// Check errors
double actualError = factor.error(values); // from smart factor
double actualError = factor.error(values); // from smart factor
NonlinearFactorGraph nfg;
nfg.add(factor1);
nfg.add(factor2);
@ -299,8 +344,7 @@ TEST( SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians ) {
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses ) {
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
@ -310,10 +354,10 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses ) {
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key,Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1,x2));
key_pairs.push_back(std::make_pair(x2,x3));
key_pairs.push_back(std::make_pair(x3,x1));
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
@ -344,20 +388,22 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses ) {
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
@ -366,11 +412,12 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses ) {
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses ) {
// here we replicate a test in SmartProjectionPoseFactor by setting interpolation
// factors to 0 and 1 (such that the rollingShutter measurements falls back to standard pixel measurements)
// Note: this is a quite extreme test since in typical camera you would not have more than
// 1 measurement per landmark at each interpolated pose
TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
// here we replicate a test in SmartProjectionPoseFactor by setting
// interpolation factors to 0 and 1 (such that the rollingShutter measurements
// falls back to standard pixel measurements) Note: this is a quite extreme
// test since in typical camera you would not have more than 1 measurement per
// landmark at each interpolated pose
using namespace vanillaPose;
// Default cameras for simple derivatives
@ -423,7 +470,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses ) {
perturbedDelta.insert(x2, delta);
double expectedError = 2500;
// After eliminating the point, A1 and A2 contain 2-rank information on cameras:
// After eliminating the point, A1 and A2 contain 2-rank information on
// cameras:
Matrix16 A1, A2;
A1 << -10, 0, 0, 0, 1, 0;
A2 << 10, 0, 1, 0, -1, 0;
@ -449,8 +497,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses ) {
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
boost::shared_ptr < RegularHessianFactor<6> > actual = smartFactor1
->createHessianFactor(values);
boost::shared_ptr<RegularHessianFactor<6>> actual =
smartFactor1->createHessianFactor(values);
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
EXPECT(assert_equal(expected, *actual, 1e-6));
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
@ -458,7 +506,7 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses ) {
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI ) {
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
@ -478,7 +526,7 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI ) {
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
double excludeLandmarksFutherThanDist = 1e10; //very large
double excludeLandmarksFutherThanDist = 1e10; // very large
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setLinearizationMode(gtsam::HESSIAN);
@ -486,13 +534,13 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI ) {
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(true);
SmartFactorRS smartFactor1(model,params);
SmartFactorRS smartFactor1(model, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor2(model,params);
SmartFactorRS smartFactor2(model, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor3(model,params);
SmartFactorRS smartFactor3(model, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors, sharedK);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -509,7 +557,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI ) {
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
// Optimization should correct 3rd pose
@ -520,7 +569,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI ) {
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_landmarkDistance ) {
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_landmarkDistance) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
@ -548,13 +598,13 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_landmarkDista
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(false);
SmartFactorRS smartFactor1(model,params);
SmartFactorRS smartFactor1(model, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor2(model,params);
SmartFactorRS smartFactor2(model, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor3(model,params);
SmartFactorRS smartFactor3(model, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors, sharedK);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -571,10 +621,12 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_landmarkDista
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
// All factors are disabled (due to the distance threshold) and pose should remain where it is
// All factors are disabled (due to the distance threshold) and pose should
// remain where it is
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
@ -582,7 +634,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_landmarkDista
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_dynamicOutlierRejection ) {
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_dynamicOutlierRejection) {
using namespace vanillaPoseRS;
// add fourth landmark
Point3 landmark4(5, -0.5, 1);
@ -594,7 +647,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_dynamicOutlie
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_lmk4);
measurements_lmk4.at(0) = measurements_lmk4.at(0) + Point2(10, 10); // add outlier
measurements_lmk4.at(0) =
measurements_lmk4.at(0) + Point2(10, 10); // add outlier
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
@ -608,7 +662,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_dynamicOutlie
interp_factors.push_back(interp_factor3);
double excludeLandmarksFutherThanDist = 1e10;
double dynamicOutlierRejectionThreshold = 3; // max 3 pixel of average reprojection error
double dynamicOutlierRejectionThreshold =
3; // max 3 pixel of average reprojection error
SmartProjectionParams params;
params.setRankTolerance(1.0);
@ -640,12 +695,15 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_dynamicOutlie
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.01, 0.01, 0.01)); // smaller noise, otherwise outlier rejection will kick in
Pose3 noise_pose = Pose3(
Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.01, 0.01,
0.01)); // smaller noise, otherwise outlier rejection will kick in
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
// Optimization should correct 3rd pose
@ -656,8 +714,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_dynamicOutlie
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRollingShutter) {
TEST(SmartProjectionPoseFactorRollingShutter,
hessianComparedToProjFactorsRollingShutter) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1;
@ -683,10 +741,15 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization point
// initialize third pose with some noise to get a nontrivial linearization
// point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal( Pose3( Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
@ -695,8 +758,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
boost::shared_ptr<GaussianFactor> linearfactor1 = smartFactor1->linearize(
values);
boost::shared_ptr<GaussianFactor> linearfactor1 =
smartFactor1->linearize(values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
@ -714,46 +777,52 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
ProjectionFactorRollingShutter factor11(measurements_lmk1[0], interp_factor1,
model, x1, x2, l0, sharedK);
Matrix H1Actual, H2Actual, H3Actual;
// note: b is minus the reprojection error, cf the smart factor jacobian computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual, H2Actual, H3Actual);
// note: b is minus the reprojection error, cf the smart factor jacobian
// computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(0, 0) = H1Actual;
F.block<2, 6>(0, 6) = H2Actual;
E.block<2, 3>(0, 0) = H3Actual;
ProjectionFactorRollingShutter factor12(measurements_lmk1[1], interp_factor2,
model, x2, x3, l0, sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual, H2Actual, H3Actual);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(2, 6) = H1Actual;
F.block<2, 6>(2, 12) = H2Actual;
E.block<2, 3>(2, 0) = H3Actual;
ProjectionFactorRollingShutter factor13(measurements_lmk1[2], interp_factor3,
model, x3, x1, l0, sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual, H2Actual, H3Actual);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(4, 12) = H1Actual;
F.block<2, 6>(4, 0) = H2Actual;
E.block<2, 3>(4, 0) = H3Actual;
// whiten
F = (1/sigma) * F;
E = (1/sigma) * E;
b = (1/sigma) * b;
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian = F.transpose() * F
- (F.transpose() * E * P * E.transpose() * F);
Matrix expectedHessian =
F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian, 1e-6)); // sanity check on hessian
EXPECT(assert_equal(actualHessian_v2, actualHessian,
1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from Jacobians
// -- compute expected information vector from manual Schur complement from
// Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
@ -771,9 +840,11 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRollingShutter_measurementsFromSamePose) {
// in this test we make sure the fact works even if we have multiple pixel measurements of the same landmark
// at a single pose, a setup that occurs in multi-camera systems
TEST(SmartProjectionPoseFactorRollingShutter,
hessianComparedToProjFactorsRollingShutter_measurementsFromSamePose) {
// in this test we make sure the fact works even if we have multiple pixel
// measurements of the same landmark at a single pose, a setup that occurs in
// multi-camera systems
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1;
@ -783,7 +854,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
// create redundant measurements:
Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
measurements_lmk1_redundant.push_back(
measurements_lmk1.at(0)); // we readd the first measurement
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
@ -799,17 +871,23 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
interp_factors.push_back(interp_factor1);
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors, sharedK);
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors,
sharedK);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization point
// initialize third pose with some noise to get a nontrivial linearization
// point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal( Pose3( Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
@ -818,8 +896,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
boost::shared_ptr<GaussianFactor> linearfactor1 = smartFactor1->linearize(
values);
boost::shared_ptr<GaussianFactor> linearfactor1 =
smartFactor1->linearize(values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
@ -828,62 +906,74 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
TriangulationResult point = smartFactor1->point();
EXPECT(point.valid()); // check triangulated point is valid
// Use standard ProjectionFactorRollingShutter factor to calculate the Jacobians
// Use standard ProjectionFactorRollingShutter factor to calculate the
// Jacobians
Matrix F = Matrix::Zero(2 * 4, 6 * 3);
Matrix E = Matrix::Zero(2 * 4, 3);
Vector b = Vector::Zero(8);
// create projection factors rolling shutter
ProjectionFactorRollingShutter factor11(measurements_lmk1_redundant[0], interp_factor1,
model, x1, x2, l0, sharedK);
ProjectionFactorRollingShutter factor11(measurements_lmk1_redundant[0],
interp_factor1, model, x1, x2, l0,
sharedK);
Matrix H1Actual, H2Actual, H3Actual;
// note: b is minus the reprojection error, cf the smart factor jacobian computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual, H2Actual, H3Actual);
// note: b is minus the reprojection error, cf the smart factor jacobian
// computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(0, 0) = H1Actual;
F.block<2, 6>(0, 6) = H2Actual;
E.block<2, 3>(0, 0) = H3Actual;
ProjectionFactorRollingShutter factor12(measurements_lmk1_redundant[1], interp_factor2,
model, x2, x3, l0, sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual, H2Actual, H3Actual);
ProjectionFactorRollingShutter factor12(measurements_lmk1_redundant[1],
interp_factor2, model, x2, x3, l0,
sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(2, 6) = H1Actual;
F.block<2, 6>(2, 12) = H2Actual;
E.block<2, 3>(2, 0) = H3Actual;
ProjectionFactorRollingShutter factor13(measurements_lmk1_redundant[2], interp_factor3,
model, x3, x1, l0, sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual, H2Actual, H3Actual);
ProjectionFactorRollingShutter factor13(measurements_lmk1_redundant[2],
interp_factor3, model, x3, x1, l0,
sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(4, 12) = H1Actual;
F.block<2, 6>(4, 0) = H2Actual;
E.block<2, 3>(4, 0) = H3Actual;
ProjectionFactorRollingShutter factor14(measurements_lmk1_redundant[3], interp_factor1,
model, x1, x2, l0, sharedK);
b.segment<2>(6) = -factor11.evaluateError(pose1, pose2, *point, H1Actual, H2Actual, H3Actual);
ProjectionFactorRollingShutter factor14(measurements_lmk1_redundant[3],
interp_factor1, model, x1, x2, l0,
sharedK);
b.segment<2>(6) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(6, 0) = H1Actual;
F.block<2, 6>(6, 6) = H2Actual;
E.block<2, 3>(6, 0) = H3Actual;
// whiten
F = (1/sigma) * F;
E = (1/sigma) * E;
b = (1/sigma) * b;
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian = F.transpose() * F
- (F.transpose() * E * P * E.transpose() * F);
Matrix expectedHessian =
F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian, 1e-6)); // sanity check on hessian
EXPECT(assert_equal(actualHessian_v2, actualHessian,
1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from Jacobians
// -- compute expected information vector from manual Schur complement from
// Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
@ -902,8 +992,8 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_measurementsFromSamePose ) {
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_measurementsFromSamePose) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
@ -913,27 +1003,32 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_measurementsF
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key,Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1,x2));
key_pairs.push_back(std::make_pair(x2,x3));
key_pairs.push_back(std::make_pair(x3,x1));
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
// For first factor, we create redundant measurement (taken by the same keys as factor 1, to
// make sure the redundancy in the keys does not create problems)
// For first factor, we create redundant measurement (taken by the same keys
// as factor 1, to make sure the redundancy in the keys does not create
// problems)
Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
std::vector<std::pair<Key,Key>> key_pairs_redundant = key_pairs;
key_pairs_redundant.push_back(key_pairs.at(0)); // we readd the first pair of keys
measurements_lmk1_redundant.push_back(
measurements_lmk1.at(0)); // we readd the first measurement
std::vector<std::pair<Key, Key>> key_pairs_redundant = key_pairs;
key_pairs_redundant.push_back(
key_pairs.at(0)); // we readd the first pair of keys
std::vector<double> interp_factors_redundant = interp_factors;
interp_factors_redundant.push_back(interp_factors.at(0));// we readd the first interp factor
interp_factors_redundant.push_back(
interp_factors.at(0)); // we readd the first interp factor
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant, interp_factors_redundant, sharedK);
smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant,
interp_factors_redundant, sharedK);
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
@ -956,20 +1051,22 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_measurementsF
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
@ -980,11 +1077,11 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_measurementsF
#ifndef DISABLE_TIMING
#include <gtsam/base/timing.h>
// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
//| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min: 0 max: 0)
//| -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02 children, min: 0 max: 0)
//| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min:
// 0 max: 0) | -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02
// children, min: 0 max: 0)
/* *************************************************************************/
TEST( SmartProjectionPoseFactorRollingShutter, timing ) {
TEST(SmartProjectionPoseFactorRollingShutter, timing) {
using namespace vanillaPose;
// Default cameras for simple derivatives
@ -1007,14 +1104,14 @@ TEST( SmartProjectionPoseFactorRollingShutter, timing ) {
size_t nrTests = 1000;
for(size_t i = 0; i<nrTests; i++){
for (size_t i = 0; i < nrTests; i++) {
SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model));
double interp_factor = 0; // equivalent to measurement taken at pose 1
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor, sharedKSimple,
body_P_sensorId);
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor,
sharedKSimple, body_P_sensorId);
interp_factor = 1; // equivalent to measurement taken at pose 2
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor, sharedKSimple,
body_P_sensorId);
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor,
sharedKSimple, body_P_sensorId);
Values values;
values.insert(x1, pose1);
@ -1024,7 +1121,7 @@ TEST( SmartProjectionPoseFactorRollingShutter, timing ) {
gttoc_(SF_RS_LINEARIZE);
}
for(size_t i = 0; i<nrTests; i++){
for (size_t i = 0; i < nrTests; i++) {
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
smartFactor->add(measurements_lmk1[0], x1);
smartFactor->add(measurements_lmk1[1], x2);
@ -1046,4 +1143,3 @@ int main() {
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -61,6 +61,7 @@ set(interface_headers
${PROJECT_SOURCE_DIR}/gtsam/slam/slam.i
${PROJECT_SOURCE_DIR}/gtsam/sfm/sfm.i
${PROJECT_SOURCE_DIR}/gtsam/navigation/navigation.i
${PROJECT_SOURCE_DIR}/gtsam/basis/basis.i
)

View File

@ -0,0 +1,12 @@
/* Please refer to:
* https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html
* These are required to save one copy operation on Python calls.
*
* NOTES
* =================
*
* `PYBIND11_MAKE_OPAQUE` will mark the type as "opaque" for the pybind11
* automatic STL binding, such that the raw objects can be accessed in Python.
* Without this they will be automatically converted to a Python object, and all
* mutations on Python side will not be reflected on C++.
*/

View File

@ -0,0 +1,12 @@
/* Please refer to:
* https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html
* These are required to save one copy operation on Python calls.
*
* NOTES
* =================
*
* `py::bind_vector` and similar machinery gives the std container a Python-like
* interface, but without the `<pybind11/stl.h>` copying mechanism. Combined
* with `PYBIND11_MAKE_OPAQUE` this allows the types to be modified with Python,
* and saves one copy operation.
*/