gtsam/gtsam/basis/Basis.h

508 lines
17 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Basis.h
* @brief Compute an interpolating basis
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/basis/ParameterMatrix.h>
#include <iostream>
/**
* This file supports creating continuous functions `f(x;p)` as a linear
* combination of `basis functions` such as the Fourier basis on SO(2) or a set
* of Chebyshev polynomials on [-1,1].
*
* In the expression `f(x;p)` the variable `x` is
* the continuous argument at which the function is evaluated, and `p` are
* the parameters which are coefficients of the different basis functions,
* e.g. p = [4; 3; 2] => 4 + 3x + 2x^2 for a polynomial.
* However, different parameterizations are also possible.
* The `Basis` class below defines a number of functors that can be used to
* evaluate `f(x;p)` at a given `x`, and these functors also calculate
* the Jacobian of `f(x;p)` with respect to the parameters `p`.
* This is actually the most important calculation, as it will allow GTSAM
* to optimize over the parameters `p`.
* This functionality is implemented using the `CRTP` or "Curiously recurring
* template pattern" C++ idiom, which is a meta-programming technique in which
* the derived class is passed as a template argument to `Basis<DERIVED>`.
* The DERIVED class is assumed to satisfy a C++ concept,
* i.e., we expect it to define the following types and methods:
- type `Parameters`: the parameters `p` in f(x;p)
- `CalculateWeights(size_t N, double x, double a=default, double b=default)`
- `DerivativeWeights(size_t N, double x, double a=default, double b=default)`
where `Weights` is an N*1 row vector which defines the basis values for the
polynomial at the specified point `x`.
E.g. A Fourier series would give the following:
- `CalculateWeights` -> For N=5, the values for the bases:
[1, cos(x), sin(x), cos(2x), sin(2x)]
- `DerivativeWeights` -> For N=5, these are:
[0, -sin(x), cos(x), -2sin(2x), 2cos(x)]
Note that for a pseudo-spectral basis (as in Chebyshev2), the weights are
instead the values for the Barycentric interpolation formula, since the values
at the polynomial points (e.g. Chebyshev points) define the bases.
*/
namespace gtsam {
using Weights = Eigen::Matrix<double, 1, -1>; /* 1xN vector */
/**
* @brief Function for computing the kronecker product of the 1*N Weight vector
* `w` with the MxM identity matrix `I` efficiently.
* The main reason for this is so we don't need to use Eigen's Unsupported
* library.
*
* @tparam M Size of the identity matrix.
* @param w The weights of the polynomial.
* @return Mx(M*N) kronecker product [w(0)*I, w(1)*I, ..., w(N-1)*I]
*/
template <size_t M>
Matrix kroneckerProductIdentity(const Weights& w) {
Matrix result(M, w.cols() * M);
result.setZero();
for (int i = 0; i < w.cols(); i++) {
result.block(0, i * M, M, M).diagonal().array() = w(i);
}
return result;
}
/// CRTP Base class for function bases
template <typename DERIVED>
class GTSAM_EXPORT Basis {
public:
/**
* Calculate weights for all x in vector X.
* Returns M*N matrix where M is the size of the vector X,
* and N is the number of basis functions.
*/
static Matrix WeightMatrix(size_t N, const Vector& X) {
Matrix W(X.size(), N);
for (int i = 0; i < X.size(); i++)
W.row(i) = DERIVED::CalculateWeights(N, X(i));
return W;
}
/**
* @brief Calculate weights for all x in vector X, with interval [a,b].
*
* @param N The number of basis functions.
* @param X The vector for which to compute the weights.
* @param a The lower bound for the interval range.
* @param b The upper bound for the interval range.
* @return Returns M*N matrix where M is the size of the vector X.
*/
static Matrix WeightMatrix(size_t N, const Vector& X, double a, double b) {
Matrix W(X.size(), N);
for (int i = 0; i < X.size(); i++)
W.row(i) = DERIVED::CalculateWeights(N, X(i), a, b);
return W;
}
/**
* An instance of an EvaluationFunctor calculates f(x;p) at a given `x`,
* applied to Parameters `p`.
* This functor is used to evaluate a parameterized function at a given scalar
* value x. When given a specific N*1 vector of Parameters, returns the scalar
* value of the function at x, possibly with Jacobians wrpt the parameters.
*/
class EvaluationFunctor {
protected:
Weights weights_;
public:
/// For serialization
EvaluationFunctor() {}
/// Constructor with interval [a,b]
EvaluationFunctor(size_t N, double x)
: weights_(DERIVED::CalculateWeights(N, x)) {}
/// Constructor with interval [a,b]
EvaluationFunctor(size_t N, double x, double a, double b)
: weights_(DERIVED::CalculateWeights(N, x, a, b)) {}
/// Regular 1D evaluation
double apply(const typename DERIVED::Parameters& p,
OptionalJacobian<-1, -1> H = boost::none) const {
if (H) *H = weights_;
return (weights_ * p)(0);
}
/// c++ sugar
double operator()(const typename DERIVED::Parameters& p,
OptionalJacobian<-1, -1> H = boost::none) const {
return apply(p, H); // might call apply in derived
}
void print(const std::string& s = "") const {
std::cout << s << (s != "" ? " " : "") << weights_ << std::endl;
}
};
/**
* VectorEvaluationFunctor at a given x, applied to ParameterMatrix<M>.
* This functor is used to evaluate a parameterized function at a given scalar
* value x. When given a specific M*N parameters, returns an M-vector the M
* corresponding functions at x, possibly with Jacobians wrpt the parameters.
*/
template <int M>
class VectorEvaluationFunctor : protected EvaluationFunctor {
protected:
using VectorM = Eigen::Matrix<double, M, 1>;
using Jacobian = Eigen::Matrix<double, /*MxMN*/ M, -1>;
Jacobian H_;
/**
* Calculate the `M*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H =[ w(0) 0 w(1) 0 w(2) 0
* 0 w(0) 0 w(1) 0 w(2) ]
* i.e., the Kronecker product of weights_ with the MxM identity matrix.
*/
void calculateJacobian() {
H_ = kroneckerProductIdentity<M>(this->weights_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// For serialization
VectorEvaluationFunctor() {}
/// Default Constructor
VectorEvaluationFunctor(size_t N, double x) : EvaluationFunctor(N, x) {
calculateJacobian();
}
/// Constructor, with interval [a,b]
VectorEvaluationFunctor(size_t N, double x, double a, double b)
: EvaluationFunctor(N, x, a, b) {
calculateJacobian();
}
/// M-dimensional evaluation
VectorM apply(const ParameterMatrix<M>& P,
OptionalJacobian</*MxN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.matrix() * this->weights_.transpose();
}
/// c++ sugar
VectorM operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*MxN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
/**
* Given a M*N Matrix of M-vectors at N polynomial points, an instance of
* VectorComponentFunctor computes the N-vector value for a specific row
* component of the M-vectors at all the polynomial points.
*
* This component is specified by the row index i, with 0<i<M.
*/
template <int M>
class VectorComponentFunctor : public EvaluationFunctor {
protected:
using Jacobian = Eigen::Matrix<double, /*1xMN*/ 1, -1>;
size_t rowIndex_;
Jacobian H_;
/*
* Calculate the `1*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H=[w(0) 0 w(1) 0 w(2) 0] for rowIndex==0
* H=[0 w(0) 0 w(1) 0 w(2)] for rowIndex==1
* i.e., one row of the Kronecker product of weights_ with the
* MxM identity matrix. See also VectorEvaluationFunctor.
*/
void calculateJacobian(size_t N) {
H_.setZero(1, M * N);
for (int j = 0; j < EvaluationFunctor::weights_.size(); j++)
H_(0, rowIndex_ + j * M) = EvaluationFunctor::weights_(j);
}
public:
/// For serialization
VectorComponentFunctor() {}
/// Construct with row index
VectorComponentFunctor(size_t N, size_t i, double x)
: EvaluationFunctor(N, x), rowIndex_(i) {
calculateJacobian(N);
}
/// Construct with row index and interval
VectorComponentFunctor(size_t N, size_t i, double x, double a, double b)
: EvaluationFunctor(N, x, a, b), rowIndex_(i) {
calculateJacobian(N);
}
/// Calculate component of component rowIndex_ of P
double apply(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.row(rowIndex_) * EvaluationFunctor::weights_.transpose();
}
/// c++ sugar
double operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
/**
* Manifold EvaluationFunctor at a given x, applied to ParameterMatrix<M>.
* This functor is used to evaluate a parameterized function at a given scalar
* value x. When given a specific M*N parameters, returns an M-vector the M
* corresponding functions at x, possibly with Jacobians wrpt the parameters.
*
* The difference with the VectorEvaluationFunctor is that after computing the
* M*1 vector xi=F(x;P), with x a scalar and P the M*N parameter vector, we
* also retract xi back to the T manifold.
* For example, if T==Rot3, then we first compute a 3-vector xi using x and P,
* and then map that 3-vector xi back to the Rot3 manifold, yielding a valid
* 3D rotation.
*/
template <class T>
class ManifoldEvaluationFunctor
: public VectorEvaluationFunctor<traits<T>::dimension> {
enum { M = traits<T>::dimension };
using Base = VectorEvaluationFunctor<M>;
public:
/// For serialization
ManifoldEvaluationFunctor() {}
/// Default Constructor
ManifoldEvaluationFunctor(size_t N, double x) : Base(N, x) {}
/// Constructor, with interval [a,b]
ManifoldEvaluationFunctor(size_t N, double x, double a, double b)
: Base(N, x, a, b) {}
/// Manifold evaluation
T apply(const ParameterMatrix<M>& P,
OptionalJacobian</*MxMN*/ -1, -1> H = boost::none) const {
// Interpolate the M-dimensional vector to yield a vector in tangent space
Eigen::Matrix<double, M, 1> xi = Base::operator()(P, H);
// Now call retract with this M-vector, possibly with derivatives
Eigen::Matrix<double, M, M> D_result_xi;
T result = T::ChartAtOrigin::Retract(xi, H ? &D_result_xi : 0);
// Finally, if derivatives are asked, apply chain rule where H is Mx(M*N)
// derivative of interpolation and D_result_xi is MxM derivative of
// retract.
if (H) *H = D_result_xi * (*H);
// and return a T
return result;
}
/// c++ sugar
T operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*MxN*/ -1, -1> H = boost::none) const {
return apply(P, H); // might call apply in derived
}
};
/// Base class for functors below that calculate derivative weights
class DerivativeFunctorBase {
protected:
Weights weights_;
public:
/// For serialization
DerivativeFunctorBase() {}
DerivativeFunctorBase(size_t N, double x)
: weights_(DERIVED::DerivativeWeights(N, x)) {}
DerivativeFunctorBase(size_t N, double x, double a, double b)
: weights_(DERIVED::DerivativeWeights(N, x, a, b)) {}
void print(const std::string& s = "") const {
std::cout << s << (s != "" ? " " : "") << weights_ << std::endl;
}
};
/**
* An instance of a DerivativeFunctor calculates f'(x;p) at a given `x`,
* applied to Parameters `p`.
* When given a scalar value x and a specific N*1 vector of Parameters,
* this functor returns the scalar derivative value of the function at x,
* possibly with Jacobians wrpt the parameters.
*/
class DerivativeFunctor : protected DerivativeFunctorBase {
public:
/// For serialization
DerivativeFunctor() {}
DerivativeFunctor(size_t N, double x) : DerivativeFunctorBase(N, x) {}
DerivativeFunctor(size_t N, double x, double a, double b)
: DerivativeFunctorBase(N, x, a, b) {}
double apply(const typename DERIVED::Parameters& p,
OptionalJacobian</*1xN*/ -1, -1> H = boost::none) const {
if (H) *H = this->weights_;
return (this->weights_ * p)(0);
}
/// c++ sugar
double operator()(const typename DERIVED::Parameters& p,
OptionalJacobian</*1xN*/ -1, -1> H = boost::none) const {
return apply(p, H); // might call apply in derived
}
};
/**
* VectorDerivativeFunctor at a given x, applied to ParameterMatrix<M>.
*
* This functor is used to evaluate the derivatives of a parameterized
* function at a given scalar value x. When given a specific M*N parameters,
* returns an M-vector the M corresponding function derivatives at x, possibly
* with Jacobians wrpt the parameters.
*/
template <int M>
class VectorDerivativeFunctor : protected DerivativeFunctorBase {
protected:
using VectorM = Eigen::Matrix<double, M, 1>;
using Jacobian = Eigen::Matrix<double, /*MxMN*/ M, -1>;
Jacobian H_;
/**
* Calculate the `M*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H =[ w(0) 0 w(1) 0 w(2) 0
* 0 w(0) 0 w(1) 0 w(2) ]
* i.e., the Kronecker product of weights_ with the MxM identity matrix.
*/
void calculateJacobian() {
H_ = kroneckerProductIdentity<M>(this->weights_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// For serialization
VectorDerivativeFunctor() {}
/// Default Constructor
VectorDerivativeFunctor(size_t N, double x) : DerivativeFunctorBase(N, x) {
calculateJacobian();
}
/// Constructor, with optional interval [a,b]
VectorDerivativeFunctor(size_t N, double x, double a, double b)
: DerivativeFunctorBase(N, x, a, b) {
calculateJacobian();
}
VectorM apply(const ParameterMatrix<M>& P,
OptionalJacobian</*MxMN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.matrix() * this->weights_.transpose();
}
/// c++ sugar
VectorM operator()(
const ParameterMatrix<M>& P,
OptionalJacobian</*MxMN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
/**
* Given a M*N Matrix of M-vectors at N polynomial points, an instance of
* ComponentDerivativeFunctor computes the N-vector derivative for a specific
* row component of the M-vectors at all the polynomial points.
*
* This component is specified by the row index i, with 0<i<M.
*/
template <int M>
class ComponentDerivativeFunctor : protected DerivativeFunctorBase {
protected:
using Jacobian = Eigen::Matrix<double, /*1xMN*/ 1, -1>;
size_t rowIndex_;
Jacobian H_;
/*
* Calculate the `1*(M*N)` Jacobian of this functor with respect to
* the M*N parameter matrix `P`.
* We flatten assuming column-major order, e.g., if N=3 and M=2, we have
* H=[w(0) 0 w(1) 0 w(2) 0] for rowIndex==0
* H=[0 w(0) 0 w(1) 0 w(2)] for rowIndex==1
* i.e., one row of the Kronecker product of weights_ with the
* MxM identity matrix. See also VectorDerivativeFunctor.
*/
void calculateJacobian(size_t N) {
H_.setZero(1, M * N);
for (int j = 0; j < this->weights_.size(); j++)
H_(0, rowIndex_ + j * M) = this->weights_(j);
}
public:
/// For serialization
ComponentDerivativeFunctor() {}
/// Construct with row index
ComponentDerivativeFunctor(size_t N, size_t i, double x)
: DerivativeFunctorBase(N, x), rowIndex_(i) {
calculateJacobian(N);
}
/// Construct with row index and interval
ComponentDerivativeFunctor(size_t N, size_t i, double x, double a, double b)
: DerivativeFunctorBase(N, x, a, b), rowIndex_(i) {
calculateJacobian(N);
}
/// Calculate derivative of component rowIndex_ of F
double apply(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
if (H) *H = H_;
return P.row(rowIndex_) * this->weights_.transpose();
}
/// c++ sugar
double operator()(const ParameterMatrix<M>& P,
OptionalJacobian</*1xMN*/ -1, -1> H = boost::none) const {
return apply(P, H);
}
};
// Vector version for MATLAB :-(
static double Derivative(double x, const Vector& p, //
OptionalJacobian</*1xN*/ -1, -1> H = boost::none) {
return DerivativeFunctor(x)(p.transpose(), H);
}
};
} // namespace gtsam