Merge branch 'develop' into fix/windows-tests

release/4.3a0
Varun Agrawal 2023-07-27 12:06:12 -04:00
commit e4ff39cd42
61 changed files with 1340 additions and 424 deletions

View File

@ -105,34 +105,52 @@ jobs:
cmake -G Ninja -B build -S . -DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF -DBOOST_ROOT="${env:BOOST_ROOT}" -DBOOST_INCLUDEDIR="${env:BOOST_ROOT}\boost\include" -DBOOST_LIBRARYDIR="${env:BOOST_ROOT}\lib"
- name: Build
shell: bash
run: |
# Since Visual Studio is a multi-generator, we need to use --config
# https://stackoverflow.com/a/24470998/1236990
cmake --build build -j4 --config ${{ matrix.build_type }} --target gtsam
cmake --build build -j4 --config ${{ matrix.build_type }} --target gtsam_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target wrap
# Target doesn't exist
# cmake --build build -j4 --config ${{ matrix.build_type }} --target wrap
- name: Test
shell: bash
run: |
# Run GTSAM tests
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.base
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.basis
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.discrete
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.geometry
# Compilation error
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.geometry
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.inference
# Compile. Fail with exception
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.linear
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.navigation
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.sam
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.sfm
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.symbolic
# Compile. Fail with exception
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.hybrid
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.nonlinear
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.slam
# Compile. Fail with exception
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.nonlinear
# Compilation error
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.slam
# Run GTSAM_UNSTABLE tests
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.base_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.geometry_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.linear_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.discrete_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.dynamics_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.nonlinear_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.slam_unstable
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.partition
# Compile. Fail with exception
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.geometry_unstable
# Compile. Fail with exception
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.linear_unstable
# Compile. Fail with exception
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.discrete_unstable
# Compile. Fail with exception
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.dynamics_unstable
# Compile. Fail with exception
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.nonlinear_unstable
# Compilation error
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.slam_unstable
# Compilation error
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.partition

View File

@ -32,6 +32,14 @@ set (CMAKE_PROJECT_VERSION_PATCH ${GTSAM_VERSION_PATCH})
###############################################################################
# Gather information, perform checks, set defaults
if(MSVC)
set(MSVC_LINKER_FLAGS "/FORCE:MULTIPLE")
set(CMAKE_EXE_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
set(CMAKE_MODULE_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
set(CMAKE_SHARED_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
set(CMAKE_STATIC_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
endif()
set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
include(GtsamMakeConfigFile)
include(GNUInstallDirs)

View File

@ -29,9 +29,9 @@
namespace gtsam {
/**
* Algebraic Decision Trees fix the range to double
* Just has some nice constructors and some syntactic sugar
* TODO: consider eliminating this class altogether?
* An algebraic decision tree fixes the range of a DecisionTree to double.
* Just has some nice constructors and some syntactic sugar.
* TODO(dellaert): consider eliminating this class altogether?
*
* @ingroup discrete
*/
@ -81,20 +81,62 @@ namespace gtsam {
AlgebraicDecisionTree(const L& label, double y1, double y2)
: Base(label, y1, y2) {}
/** Create a new leaf function splitting on a variable */
/**
* @brief Create a new leaf function splitting on a variable
*
* @param labelC: The label with cardinality 2
* @param y1: The value for the first key
* @param y2: The value for the second key
*
* Example:
* @code{.cpp}
* std::pair<string, size_t> A {"a", 2};
* AlgebraicDecisionTree<string> a(A, 0.6, 0.4);
* @endcode
*/
AlgebraicDecisionTree(const typename Base::LabelC& labelC, double y1,
double y2)
: Base(labelC, y1, y2) {}
/** Create from keys and vector table */
/**
* @brief Create from keys with cardinalities and a vector table
*
* @param labelCs: The keys, with cardinalities, given as pairs
* @param ys: The vector table
*
* Example with three keys, A, B, and C, with cardinalities 2, 3, and 2,
* respectively, and a vector table of size 12:
* @code{.cpp}
* DiscreteKey A(0, 2), B(1, 3), C(2, 2);
* const vector<double> cpt{
* 1.0 / 3, 2.0 / 3, 3.0 / 7, 4.0 / 7, 5.0 / 11, 6.0 / 11, //
* 1.0 / 9, 8.0 / 9, 3.0 / 6, 3.0 / 6, 5.0 / 10, 5.0 / 10};
* AlgebraicDecisionTree<Key> expected(A & B & C, cpt);
* @endcode
* The table is given in the following order:
* A=0, B=0, C=0
* A=0, B=0, C=1
* ...
* A=1, B=1, C=1
* Hence, the first line in the table is for A==0, and the second for A==1.
* In each line, the first two entries are for B==0, the next two for B==1,
* and the last two for B==2. Each pair is for a C value of 0 and 1.
*/
AlgebraicDecisionTree //
(const std::vector<typename Base::LabelC>& labelCs,
const std::vector<double>& ys) {
const std::vector<double>& ys) {
this->root_ =
Base::create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/** Create from keys and string table */
/**
* @brief Create from keys and string table
*
* @param labelCs: The keys, with cardinalities, given as pairs
* @param table: The string table, given as a string of doubles.
*
* @note Table needs to be in same order as the vector table in the other constructor.
*/
AlgebraicDecisionTree //
(const std::vector<typename Base::LabelC>& labelCs,
const std::string& table) {
@ -109,7 +151,13 @@ namespace gtsam {
Base::create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/** Create a new function splitting on a variable */
/**
* @brief Create a range of decision trees, splitting on a single variable.
*
* @param begin: Iterator to beginning of a range of decision trees
* @param end: Iterator to end of a range of decision trees
* @param label: The label to split on
*/
template <typename Iterator>
AlgebraicDecisionTree(Iterator begin, Iterator end, const L& label)
: Base(nullptr) {

View File

@ -93,7 +93,8 @@ namespace gtsam {
/// print
void print(const std::string& s, const LabelFormatter& labelFormatter,
const ValueFormatter& valueFormatter) const override {
std::cout << s << " Leaf " << valueFormatter(constant_) << std::endl;
std::cout << s << " Leaf [" << nrAssignments() << "] "
<< valueFormatter(constant_) << std::endl;
}
/** Write graphviz format to stream `os`. */
@ -626,7 +627,7 @@ namespace gtsam {
// B=1
// A=0: 3
// A=1: 4
// Note, through the magic of "compose", create([A B],[1 2 3 4]) will produce
// Note, through the magic of "compose", create([A B],[1 3 2 4]) will produce
// exactly the same tree as above: the highest label is always the root.
// However, it will be *way* faster if labels are given highest to lowest.
template<typename L, typename Y>
@ -827,6 +828,16 @@ namespace gtsam {
return total;
}
/****************************************************************************/
template <typename L, typename Y>
size_t DecisionTree<L, Y>::nrAssignments() const {
size_t n = 0;
this->visitLeaf([&n](const DecisionTree<L, Y>::Leaf& leaf) {
n += leaf.nrAssignments();
});
return n;
}
/****************************************************************************/
// fold is just done with a visit
template <typename L, typename Y>

View File

@ -39,9 +39,23 @@
namespace gtsam {
/**
* Decision Tree
* L = label for variables
* Y = function range (any algebra), e.g., bool, int, double
* @brief a decision tree is a function from assignments to values.
* @tparam L label for variables
* @tparam Y function range (any algebra), e.g., bool, int, double
*
* After creating a decision tree on some variables, the tree can be evaluated
* on an assignment to those variables. Example:
*
* @code{.cpp}
* // Create a decision stump one one variable 'a' with values 10 and 20.
* DecisionTree<char, int> tree('a', 10, 20);
*
* // Evaluate the tree on an assignment to the variable.
* int value0 = tree({{'a', 0}}); // value0 = 10
* int value1 = tree({{'a', 1}}); // value1 = 20
* @endcode
*
* More examples can be found in testDecisionTree.cpp
*
* @ingroup discrete
*/
@ -136,7 +150,8 @@ namespace gtsam {
NodePtr root_;
protected:
/** Internal recursive function to create from keys, cardinalities,
/**
* Internal recursive function to create from keys, cardinalities,
* and Y values
*/
template<typename It, typename ValueIt>
@ -167,7 +182,13 @@ namespace gtsam {
/** Create a constant */
explicit DecisionTree(const Y& y);
/// Create tree with 2 assignments `y1`, `y2`, splitting on variable `label`
/**
* @brief Create tree with 2 assignments `y1`, `y2`, splitting on variable `label`
*
* @param label The variable to split on.
* @param y1 The value for the first assignment.
* @param y2 The value for the second assignment.
*/
DecisionTree(const L& label, const Y& y1, const Y& y2);
/** Allow Label+Cardinality for convenience */
@ -299,6 +320,42 @@ namespace gtsam {
/// Return the number of leaves in the tree.
size_t nrLeaves() const;
/**
* @brief This is a convenience function which returns the total number of
* leaf assignments in the decision tree.
* This function is not used for anymajor operations within the discrete
* factor graph framework.
*
* Leaf assignments represent the cardinality of each leaf node, e.g. in a
* binary tree each leaf has 2 assignments. This includes counts removed
* from implicit pruning hence, it will always be >= nrLeaves().
*
* E.g. we have a decision tree as below, where each node has 2 branches:
*
* Choice(m1)
* 0 Choice(m0)
* 0 0 Leaf 0.0
* 0 1 Leaf 0.0
* 1 Choice(m0)
* 1 0 Leaf 1.0
* 1 1 Leaf 2.0
*
* In the unpruned form, the tree will have 4 assignments, 2 for each key,
* and 4 leaves.
*
* In the pruned form, the number of assignments is still 4 but the number
* of leaves is now 3, as below:
*
* Choice(m1)
* 0 Leaf 0.0
* 1 Choice(m0)
* 1 0 Leaf 1.0
* 1 1 Leaf 2.0
*
* @return size_t
*/
size_t nrAssignments() const;
/**
* @brief Fold a binary function over the tree, returning accumulator.
*

View File

@ -101,6 +101,14 @@ namespace gtsam {
return DecisionTreeFactor(keys, result);
}
/* ************************************************************************ */
DecisionTreeFactor DecisionTreeFactor::apply(ADT::UnaryAssignment op) const {
// apply operand
ADT result = ADT::apply(op);
// Make a new factor
return DecisionTreeFactor(discreteKeys(), result);
}
/* ************************************************************************ */
DecisionTreeFactor::shared_ptr DecisionTreeFactor::combine(
size_t nrFrontals, ADT::Binary op) const {

View File

@ -59,11 +59,46 @@ namespace gtsam {
/** Constructor from DiscreteKeys and AlgebraicDecisionTree */
DecisionTreeFactor(const DiscreteKeys& keys, const ADT& potentials);
/** Constructor from doubles */
/**
* @brief Constructor from doubles
*
* @param keys The discrete keys.
* @param table The table of values.
*
* @throw std::invalid_argument if the size of `table` does not match the
* number of assignments.
*
* Example:
* @code{.cpp}
* DiscreteKey X(0,2), Y(1,3);
* const std::vector<double> table {2, 5, 3, 6, 4, 7};
* DecisionTreeFactor f1({X, Y}, table);
* @endcode
*
* The values in the table should be laid out so that the first key varies
* the slowest, and the last key the fastest.
*/
DecisionTreeFactor(const DiscreteKeys& keys,
const std::vector<double>& table);
const std::vector<double>& table);
/** Constructor from string */
/**
* @brief Constructor from string
*
* @param keys The discrete keys.
* @param table The table of values.
*
* @throw std::invalid_argument if the size of `table` does not match the
* number of assignments.
*
* Example:
* @code{.cpp}
* DiscreteKey X(0,2), Y(1,3);
* DecisionTreeFactor factor({X, Y}, "2 5 3 6 4 7");
* @endcode
*
* The values in the table should be laid out so that the first key varies
* the slowest, and the last key the fastest.
*/
DecisionTreeFactor(const DiscreteKeys& keys, const std::string& table);
/// Single-key specialization
@ -147,6 +182,12 @@ namespace gtsam {
/// @name Advanced Interface
/// @{
/**
* Apply unary operator (*this) "op" f
* @param op a unary operator that operates on AlgebraicDecisionTree
*/
DecisionTreeFactor apply(ADT::UnaryAssignment op) const;
/**
* Apply binary operator (*this) "op" f
* @param f the second argument for op

View File

@ -58,6 +58,11 @@ class GTSAM_EXPORT DiscreteBayesTreeClique
//** evaluate conditional probability of subtree for given DiscreteValues */
double evaluate(const DiscreteValues& values) const;
//** (Preferred) sugar for the above for given DiscreteValues */
double operator()(const DiscreteValues& values) const {
return evaluate(values);
}
};
/* ************************************************************************* */

View File

@ -41,16 +41,30 @@ class DiscreteJunctionTree;
/**
* @brief Main elimination function for DiscreteFactorGraph.
*
* @param factors
* @param keys
* @return GTSAM_EXPORT
*
* @param factors The factor graph to eliminate.
* @param frontalKeys An ordering for which variables to eliminate.
* @return A pair of the resulting conditional and the separator factor.
* @ingroup discrete
*/
GTSAM_EXPORT std::pair<std::shared_ptr<DiscreteConditional>, DecisionTreeFactor::shared_ptr>
EliminateDiscrete(const DiscreteFactorGraph& factors, const Ordering& keys);
GTSAM_EXPORT
std::pair<DiscreteConditional::shared_ptr, DecisionTreeFactor::shared_ptr>
EliminateDiscrete(const DiscreteFactorGraph& factors,
const Ordering& frontalKeys);
/**
* @brief Alternate elimination function for that creates non-normalized lookup tables.
*
* @param factors The factor graph to eliminate.
* @param frontalKeys An ordering for which variables to eliminate.
* @return A pair of the resulting lookup table and the separator factor.
* @ingroup discrete
*/
GTSAM_EXPORT
std::pair<DiscreteConditional::shared_ptr, DecisionTreeFactor::shared_ptr>
EliminateForMPE(const DiscreteFactorGraph& factors,
const Ordering& frontalKeys);
/* ************************************************************************* */
template<> struct EliminationTraits<DiscreteFactorGraph>
{
typedef DiscreteFactor FactorType; ///< Type of factors in factor graph
@ -60,12 +74,14 @@ template<> struct EliminationTraits<DiscreteFactorGraph>
typedef DiscreteEliminationTree EliminationTreeType; ///< Type of elimination tree
typedef DiscreteBayesTree BayesTreeType; ///< Type of Bayes tree
typedef DiscreteJunctionTree JunctionTreeType; ///< Type of Junction tree
/// The default dense elimination function
static std::pair<std::shared_ptr<ConditionalType>,
std::shared_ptr<FactorType> >
DefaultEliminate(const FactorGraphType& factors, const Ordering& keys) {
return EliminateDiscrete(factors, keys);
}
/// The default ordering generation function
static Ordering DefaultOrderingFunc(
const FactorGraphType& graph,
@ -74,7 +90,6 @@ template<> struct EliminationTraits<DiscreteFactorGraph>
}
};
/* ************************************************************************* */
/**
* A Discrete Factor Graph is a factor graph where all factors are Discrete, i.e.
* Factor == DiscreteFactor
@ -108,8 +123,8 @@ class GTSAM_EXPORT DiscreteFactorGraph
/** Implicit copy/downcast constructor to override explicit template container
* constructor */
template <class DERIVEDFACTOR>
DiscreteFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
template <class DERIVED_FACTOR>
DiscreteFactorGraph(const FactorGraph<DERIVED_FACTOR>& graph) : Base(graph) {}
/// @name Testable
/// @{
@ -227,10 +242,6 @@ class GTSAM_EXPORT DiscreteFactorGraph
/// @}
}; // \ DiscreteFactorGraph
std::pair<DiscreteConditional::shared_ptr, DecisionTreeFactor::shared_ptr> //
EliminateForMPE(const DiscreteFactorGraph& factors,
const Ordering& frontalKeys);
/// traits
template <>
struct traits<DiscreteFactorGraph> : public Testable<DiscreteFactorGraph> {};

View File

@ -66,4 +66,6 @@ namespace gtsam {
DiscreteJunctionTree(const DiscreteEliminationTree& eliminationTree);
};
/// typedef for wrapper:
using DiscreteCluster = DiscreteJunctionTree::Cluster;
}

View File

@ -120,6 +120,11 @@ class GTSAM_EXPORT DiscreteValues : public Assignment<Key> {
/// @}
};
/// Free version of CartesianProduct.
inline std::vector<DiscreteValues> cartesianProduct(const DiscreteKeys& keys) {
return DiscreteValues::CartesianProduct(keys);
}
/// Free version of markdown.
std::string markdown(const DiscreteValues& values,
const KeyFormatter& keyFormatter = DefaultKeyFormatter,

View File

@ -23,6 +23,8 @@
#include <vector>
#include <gtsam/dllexport.h>
#include <gtsam/dllexport.h>
namespace gtsam {
/**
* @brief A simple parser that replaces the boost spirit parser.

View File

@ -64,7 +64,7 @@ TableFactor::TableFactor(const DiscreteConditional& c)
Eigen::SparseVector<double> TableFactor::Convert(
const std::vector<double>& table) {
Eigen::SparseVector<double> sparse_table(table.size());
// Count number of nonzero elements in table and reserving the space.
// Count number of nonzero elements in table and reserve the space.
const uint64_t nnz = std::count_if(table.begin(), table.end(),
[](uint64_t i) { return i != 0; });
sparse_table.reserve(nnz);
@ -218,6 +218,45 @@ void TableFactor::print(const string& s, const KeyFormatter& formatter) const {
cout << "number of nnzs: " << sparse_table_.nonZeros() << endl;
}
/* ************************************************************************ */
TableFactor TableFactor::apply(Unary op) const {
// Initialize new factor.
uint64_t cardi = 1;
for (auto [key, c] : cardinalities_) cardi *= c;
Eigen::SparseVector<double> sparse_table(cardi);
sparse_table.reserve(sparse_table_.nonZeros());
// Populate
for (SparseIt it(sparse_table_); it; ++it) {
sparse_table.coeffRef(it.index()) = op(it.value());
}
// Free unused memory and return.
sparse_table.pruned();
sparse_table.data().squeeze();
return TableFactor(discreteKeys(), sparse_table);
}
/* ************************************************************************ */
TableFactor TableFactor::apply(UnaryAssignment op) const {
// Initialize new factor.
uint64_t cardi = 1;
for (auto [key, c] : cardinalities_) cardi *= c;
Eigen::SparseVector<double> sparse_table(cardi);
sparse_table.reserve(sparse_table_.nonZeros());
// Populate
for (SparseIt it(sparse_table_); it; ++it) {
DiscreteValues assignment = findAssignments(it.index());
sparse_table.coeffRef(it.index()) = op(assignment, it.value());
}
// Free unused memory and return.
sparse_table.pruned();
sparse_table.data().squeeze();
return TableFactor(discreteKeys(), sparse_table);
}
/* ************************************************************************ */
TableFactor TableFactor::apply(const TableFactor& f, Binary op) const {
if (keys_.empty() && sparse_table_.nonZeros() == 0)

View File

@ -93,6 +93,9 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
typedef std::shared_ptr<TableFactor> shared_ptr;
typedef Eigen::SparseVector<double>::InnerIterator SparseIt;
typedef std::vector<std::pair<DiscreteValues, double>> AssignValList;
using Unary = std::function<double(const double&)>;
using UnaryAssignment =
std::function<double(const Assignment<Key>&, const double&)>;
using Binary = std::function<double(const double, const double)>;
public:
@ -218,6 +221,18 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
/// @name Advanced Interface
/// @{
/**
* Apply unary operator `op(*this)` where `op` accepts the discrete value.
* @param op a unary operator that operates on TableFactor
*/
TableFactor apply(Unary op) const;
/**
* Apply unary operator `op(*this)` where `op` accepts the discrete assignment
* and the value at that assignment.
* @param op a unary operator that operates on TableFactor
*/
TableFactor apply(UnaryAssignment op) const;
/**
* Apply binary operator (*this) "op" f
* @param f the second argument for op
@ -225,10 +240,19 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
*/
TableFactor apply(const TableFactor& f, Binary op) const;
/// Return keys in contract mode.
/**
* Return keys in contract mode.
*
* Modes are each of the dimensions of a sparse tensor,
* and the contract modes represent which dimensions will
* be involved in contraction (aka tensor multiplication).
*/
DiscreteKeys contractDkeys(const TableFactor& f) const;
/// Return keys in free mode.
/**
* @brief Return keys in free mode which are the dimensions
* not involved in the contraction operation.
*/
DiscreteKeys freeDkeys(const TableFactor& f) const;
/// Return union of DiscreteKeys in two factors.

View File

@ -17,6 +17,8 @@ class DiscreteKeys {
};
// DiscreteValues is added in specializations/discrete.h as a std::map
std::vector<gtsam::DiscreteValues> cartesianProduct(
const gtsam::DiscreteKeys& keys);
string markdown(
const gtsam::DiscreteValues& values,
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter);
@ -31,27 +33,30 @@ string html(const gtsam::DiscreteValues& values,
std::map<gtsam::Key, std::vector<std::string>> names);
#include <gtsam/discrete/DiscreteFactor.h>
class DiscreteFactor {
virtual class DiscreteFactor : gtsam::Factor {
void print(string s = "DiscreteFactor\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::DiscreteFactor& other, double tol = 1e-9) const;
bool empty() const;
size_t size() const;
double operator()(const gtsam::DiscreteValues& values) const;
};
#include <gtsam/discrete/DecisionTreeFactor.h>
virtual class DecisionTreeFactor : gtsam::DiscreteFactor {
DecisionTreeFactor();
DecisionTreeFactor(const gtsam::DiscreteKey& key,
const std::vector<double>& spec);
DecisionTreeFactor(const gtsam::DiscreteKey& key, string table);
DecisionTreeFactor(const gtsam::DiscreteKeys& keys,
const std::vector<double>& table);
DecisionTreeFactor(const gtsam::DiscreteKeys& keys, string table);
DecisionTreeFactor(const std::vector<gtsam::DiscreteKey>& keys,
const std::vector<double>& table);
DecisionTreeFactor(const std::vector<gtsam::DiscreteKey>& keys, string table);
DecisionTreeFactor(const gtsam::DiscreteConditional& c);
void print(string s = "DecisionTreeFactor\n",
@ -59,6 +64,8 @@ virtual class DecisionTreeFactor : gtsam::DiscreteFactor {
gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::DecisionTreeFactor& other, double tol = 1e-9) const;
size_t cardinality(gtsam::Key j) const;
double operator()(const gtsam::DiscreteValues& values) const;
gtsam::DecisionTreeFactor operator*(const gtsam::DecisionTreeFactor& f) const;
size_t cardinality(gtsam::Key j) const;
@ -66,6 +73,7 @@ virtual class DecisionTreeFactor : gtsam::DiscreteFactor {
gtsam::DecisionTreeFactor* sum(size_t nrFrontals) const;
gtsam::DecisionTreeFactor* sum(const gtsam::Ordering& keys) const;
gtsam::DecisionTreeFactor* max(size_t nrFrontals) const;
gtsam::DecisionTreeFactor* max(const gtsam::Ordering& keys) const;
string dot(
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter,
@ -203,10 +211,16 @@ class DiscreteBayesTreeClique {
DiscreteBayesTreeClique(const gtsam::DiscreteConditional* conditional);
const gtsam::DiscreteConditional* conditional() const;
bool isRoot() const;
size_t nrChildren() const;
const gtsam::DiscreteBayesTreeClique* operator[](size_t i) const;
void print(string s = "DiscreteBayesTreeClique",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void printSignature(
const string& s = "Clique: ",
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
double evaluate(const gtsam::DiscreteValues& values) const;
double operator()(const gtsam::DiscreteValues& values) const;
};
class DiscreteBayesTree {
@ -220,6 +234,9 @@ class DiscreteBayesTree {
bool empty() const;
const DiscreteBayesTreeClique* operator[](size_t j) const;
double evaluate(const gtsam::DiscreteValues& values) const;
double operator()(const gtsam::DiscreteValues& values) const;
string dot(const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void saveGraph(string s,
@ -242,9 +259,9 @@ class DiscreteBayesTree {
class DiscreteLookupTable : gtsam::DiscreteConditional{
DiscreteLookupTable(size_t nFrontals, const gtsam::DiscreteKeys& keys,
const gtsam::DecisionTreeFactor::ADT& potentials);
void print(
const std::string& s = "Discrete Lookup Table: ",
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter) const;
void print(string s = "Discrete Lookup Table: ",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
size_t argmax(const gtsam::DiscreteValues& parentsValues) const;
};
@ -263,6 +280,14 @@ class DiscreteLookupDAG {
};
#include <gtsam/discrete/DiscreteFactorGraph.h>
std::pair<gtsam::DiscreteConditional*, gtsam::DecisionTreeFactor*>
EliminateDiscrete(const gtsam::DiscreteFactorGraph& factors,
const gtsam::Ordering& frontalKeys);
std::pair<gtsam::DiscreteConditional*, gtsam::DecisionTreeFactor*>
EliminateForMPE(const gtsam::DiscreteFactorGraph& factors,
const gtsam::Ordering& frontalKeys);
class DiscreteFactorGraph {
DiscreteFactorGraph();
DiscreteFactorGraph(const gtsam::DiscreteBayesNet& bayesNet);
@ -277,6 +302,7 @@ class DiscreteFactorGraph {
void add(const gtsam::DiscreteKey& j, const std::vector<double>& spec);
void add(const gtsam::DiscreteKeys& keys, string spec);
void add(const std::vector<gtsam::DiscreteKey>& keys, string spec);
void add(const std::vector<gtsam::DiscreteKey>& keys, const std::vector<double>& spec);
bool empty() const;
size_t size() const;
@ -290,25 +316,46 @@ class DiscreteFactorGraph {
double operator()(const gtsam::DiscreteValues& values) const;
gtsam::DiscreteValues optimize() const;
gtsam::DiscreteBayesNet sumProduct();
gtsam::DiscreteBayesNet sumProduct(gtsam::Ordering::OrderingType type);
gtsam::DiscreteBayesNet sumProduct(
gtsam::Ordering::OrderingType type = gtsam::Ordering::COLAMD);
gtsam::DiscreteBayesNet sumProduct(const gtsam::Ordering& ordering);
gtsam::DiscreteLookupDAG maxProduct();
gtsam::DiscreteLookupDAG maxProduct(gtsam::Ordering::OrderingType type);
gtsam::DiscreteLookupDAG maxProduct(
gtsam::Ordering::OrderingType type = gtsam::Ordering::COLAMD);
gtsam::DiscreteLookupDAG maxProduct(const gtsam::Ordering& ordering);
gtsam::DiscreteBayesNet* eliminateSequential();
gtsam::DiscreteBayesNet* eliminateSequential(gtsam::Ordering::OrderingType type);
gtsam::DiscreteBayesNet* eliminateSequential(
gtsam::Ordering::OrderingType type = gtsam::Ordering::COLAMD);
gtsam::DiscreteBayesNet* eliminateSequential(
gtsam::Ordering::OrderingType type,
const gtsam::DiscreteFactorGraph::Eliminate& function);
gtsam::DiscreteBayesNet* eliminateSequential(const gtsam::Ordering& ordering);
gtsam::DiscreteBayesNet* eliminateSequential(
const gtsam::Ordering& ordering,
const gtsam::DiscreteFactorGraph::Eliminate& function);
pair<gtsam::DiscreteBayesNet*, gtsam::DiscreteFactorGraph*>
eliminatePartialSequential(const gtsam::Ordering& ordering);
eliminatePartialSequential(const gtsam::Ordering& ordering);
pair<gtsam::DiscreteBayesNet*, gtsam::DiscreteFactorGraph*>
eliminatePartialSequential(
const gtsam::Ordering& ordering,
const gtsam::DiscreteFactorGraph::Eliminate& function);
gtsam::DiscreteBayesTree* eliminateMultifrontal();
gtsam::DiscreteBayesTree* eliminateMultifrontal(gtsam::Ordering::OrderingType type);
gtsam::DiscreteBayesTree* eliminateMultifrontal(const gtsam::Ordering& ordering);
gtsam::DiscreteBayesTree* eliminateMultifrontal(
gtsam::Ordering::OrderingType type = gtsam::Ordering::COLAMD);
gtsam::DiscreteBayesTree* eliminateMultifrontal(
gtsam::Ordering::OrderingType type,
const gtsam::DiscreteFactorGraph::Eliminate& function);
gtsam::DiscreteBayesTree* eliminateMultifrontal(
const gtsam::Ordering& ordering);
gtsam::DiscreteBayesTree* eliminateMultifrontal(
const gtsam::Ordering& ordering,
const gtsam::DiscreteFactorGraph::Eliminate& function);
pair<gtsam::DiscreteBayesTree*, gtsam::DiscreteFactorGraph*>
eliminatePartialMultifrontal(const gtsam::Ordering& ordering);
eliminatePartialMultifrontal(const gtsam::Ordering& ordering);
pair<gtsam::DiscreteBayesTree*, gtsam::DiscreteFactorGraph*>
eliminatePartialMultifrontal(
const gtsam::Ordering& ordering,
const gtsam::DiscreteFactorGraph::Eliminate& function);
string dot(
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter,
@ -328,4 +375,41 @@ class DiscreteFactorGraph {
std::map<gtsam::Key, std::vector<std::string>> names) const;
};
#include <gtsam/discrete/DiscreteEliminationTree.h>
class DiscreteEliminationTree {
DiscreteEliminationTree(const gtsam::DiscreteFactorGraph& factorGraph,
const gtsam::VariableIndex& structure,
const gtsam::Ordering& order);
DiscreteEliminationTree(const gtsam::DiscreteFactorGraph& factorGraph,
const gtsam::Ordering& order);
void print(
string name = "EliminationTree: ",
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::DiscreteEliminationTree& other,
double tol = 1e-9) const;
};
#include <gtsam/discrete/DiscreteJunctionTree.h>
class DiscreteCluster {
gtsam::Ordering orderedFrontalKeys;
gtsam::DiscreteFactorGraph factors;
const gtsam::DiscreteCluster& operator[](size_t i) const;
size_t nrChildren() const;
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};
class DiscreteJunctionTree {
DiscreteJunctionTree(const gtsam::DiscreteEliminationTree& eliminationTree);
void print(
string name = "JunctionTree: ",
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
size_t nrRoots() const;
const gtsam::DiscreteCluster& operator[](size_t i) const;
};
} // namespace gtsam

View File

@ -25,6 +25,7 @@
#include <gtsam/base/serializationTestHelpers.h>
#include <gtsam/discrete/DecisionTree-inl.h>
#include <gtsam/discrete/Signature.h>
#include <gtsam/inference/Symbol.h>
#include <iomanip>
@ -75,6 +76,19 @@ struct traits<CrazyDecisionTree> : public Testable<CrazyDecisionTree> {};
GTSAM_CONCEPT_TESTABLE_INST(CrazyDecisionTree)
/* ************************************************************************** */
// Test char labels and int range
/* ************************************************************************** */
// Create a decision stump one one variable 'a' with values 10 and 20.
TEST(DecisionTree, Constructor) {
DecisionTree<char, int> tree('a', 10, 20);
// Evaluate the tree on an assignment to the variable.
EXPECT_LONGS_EQUAL(10, tree({{'a', 0}}));
EXPECT_LONGS_EQUAL(20, tree({{'a', 1}}));
}
/* ************************************************************************** */
// Test string labels and int range
/* ************************************************************************** */
@ -118,18 +132,47 @@ struct Ring {
static inline int mul(const int& a, const int& b) { return a * b; }
};
/* ************************************************************************** */
// Check that creating decision trees respects key order.
TEST(DecisionTree, ConstructorOrder) {
// Create labels
string A("A"), B("B");
const std::vector<int> ys1 = {1, 2, 3, 4};
DT tree1({{B, 2}, {A, 2}}, ys1); // faster version, as B is "higher" than A!
const std::vector<int> ys2 = {1, 3, 2, 4};
DT tree2({{A, 2}, {B, 2}}, ys2); // slower version !
// Both trees will be the same, tree is order from high to low labels.
// Choice(B)
// 0 Choice(A)
// 0 0 Leaf 1
// 0 1 Leaf 2
// 1 Choice(A)
// 1 0 Leaf 3
// 1 1 Leaf 4
EXPECT(tree2.equals(tree1));
// Check the values are as expected by calling the () operator:
EXPECT_LONGS_EQUAL(1, tree1({{A, 0}, {B, 0}}));
EXPECT_LONGS_EQUAL(3, tree1({{A, 0}, {B, 1}}));
EXPECT_LONGS_EQUAL(2, tree1({{A, 1}, {B, 0}}));
EXPECT_LONGS_EQUAL(4, tree1({{A, 1}, {B, 1}}));
}
/* ************************************************************************** */
// test DT
TEST(DecisionTree, example) {
TEST(DecisionTree, Example) {
// Create labels
string A("A"), B("B"), C("C");
// create a value
Assignment<string> x00, x01, x10, x11;
x00[A] = 0, x00[B] = 0;
x01[A] = 0, x01[B] = 1;
x10[A] = 1, x10[B] = 0;
x11[A] = 1, x11[B] = 1;
// Create assignments using brace initialization:
Assignment<string> x00{{A, 0}, {B, 0}};
Assignment<string> x01{{A, 0}, {B, 1}};
Assignment<string> x10{{A, 1}, {B, 0}};
Assignment<string> x11{{A, 1}, {B, 1}};
// empty
DT empty;
@ -241,8 +284,7 @@ TEST(DecisionTree, ConvertValuesOnly) {
StringBoolTree f2(f1, bool_of_int);
// Check a value
Assignment<string> x00;
x00["A"] = 0, x00["B"] = 0;
Assignment<string> x00 {{A, 0}, {B, 0}};
EXPECT(!f2(x00));
}
@ -266,10 +308,11 @@ TEST(DecisionTree, ConvertBoth) {
// Check some values
Assignment<Label> x00, x01, x10, x11;
x00[X] = 0, x00[Y] = 0;
x01[X] = 0, x01[Y] = 1;
x10[X] = 1, x10[Y] = 0;
x11[X] = 1, x11[Y] = 1;
x00 = {{X, 0}, {Y, 0}};
x01 = {{X, 0}, {Y, 1}};
x10 = {{X, 1}, {Y, 0}};
x11 = {{X, 1}, {Y, 1}};
EXPECT(!f2(x00));
EXPECT(!f2(x01));
EXPECT(f2(x10));

View File

@ -27,6 +27,18 @@
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST(DecisionTreeFactor, ConstructorsMatch) {
// Declare two keys
DiscreteKey X(0, 2), Y(1, 3);
// Create with vector and with string
const std::vector<double> table {2, 5, 3, 6, 4, 7};
DecisionTreeFactor f1({X, Y}, table);
DecisionTreeFactor f2({X, Y}, "2 5 3 6 4 7");
EXPECT(assert_equal(f1, f2));
}
/* ************************************************************************* */
TEST( DecisionTreeFactor, constructors)
{
@ -41,21 +53,18 @@ TEST( DecisionTreeFactor, constructors)
EXPECT_LONGS_EQUAL(2,f2.size());
EXPECT_LONGS_EQUAL(3,f3.size());
DiscreteValues values;
values[0] = 1; // x
values[1] = 2; // y
values[2] = 1; // z
EXPECT_DOUBLES_EQUAL(8, f1(values), 1e-9);
EXPECT_DOUBLES_EQUAL(7, f2(values), 1e-9);
EXPECT_DOUBLES_EQUAL(75, f3(values), 1e-9);
DiscreteValues x121{{0, 1}, {1, 2}, {2, 1}};
EXPECT_DOUBLES_EQUAL(8, f1(x121), 1e-9);
EXPECT_DOUBLES_EQUAL(7, f2(x121), 1e-9);
EXPECT_DOUBLES_EQUAL(75, f3(x121), 1e-9);
// Assert that error = -log(value)
EXPECT_DOUBLES_EQUAL(-log(f1(values)), f1.error(values), 1e-9);
EXPECT_DOUBLES_EQUAL(-log(f1(x121)), f1.error(x121), 1e-9);
// Construct from DiscreteConditional
DiscreteConditional conditional(X | Y = "1/1 2/3 1/4");
DecisionTreeFactor f4(conditional);
EXPECT_DOUBLES_EQUAL(0.8, f4(values), 1e-9);
EXPECT_DOUBLES_EQUAL(0.8, f4(x121), 1e-9);
}
/* ************************************************************************* */

View File

@ -16,23 +16,24 @@
*/
#include <gtsam/base/Vector.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteBayesTree.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/inference/BayesNet.h>
#include <CppUnitLite/TestHarness.h>
#include <iostream>
#include <vector>
using namespace std;
using namespace gtsam;
static constexpr bool debug = false;
/* ************************************************************************* */
struct TestFixture {
vector<DiscreteKey> keys;
DiscreteKeys keys;
std::vector<DiscreteValues> assignments;
DiscreteBayesNet bayesNet;
std::shared_ptr<DiscreteBayesTree> bayesTree;
@ -47,6 +48,9 @@ struct TestFixture {
keys.push_back(key_i);
}
// Enumerate all assignments.
assignments = DiscreteValues::CartesianProduct(keys);
// Create thin-tree Bayesnet.
bayesNet.add(keys[14] % "1/3");
@ -74,9 +78,9 @@ struct TestFixture {
};
/* ************************************************************************* */
// Check that BN and BT give the same answer on all configurations
TEST(DiscreteBayesTree, ThinTree) {
const TestFixture self;
const auto& keys = self.keys;
TestFixture self;
if (debug) {
GTSAM_PRINT(self.bayesNet);
@ -95,47 +99,56 @@ TEST(DiscreteBayesTree, ThinTree) {
EXPECT_LONGS_EQUAL(i, *(clique_i->conditional_->beginFrontals()));
}
auto R = self.bayesTree->roots().front();
// Check whether BN and BT give the same answer on all configurations
auto allPosbValues = DiscreteValues::CartesianProduct(
keys[0] & keys[1] & keys[2] & keys[3] & keys[4] & keys[5] & keys[6] &
keys[7] & keys[8] & keys[9] & keys[10] & keys[11] & keys[12] & keys[13] &
keys[14]);
for (size_t i = 0; i < allPosbValues.size(); ++i) {
DiscreteValues x = allPosbValues[i];
for (const auto& x : self.assignments) {
double expected = self.bayesNet.evaluate(x);
double actual = self.bayesTree->evaluate(x);
DOUBLES_EQUAL(expected, actual, 1e-9);
}
}
// Calculate all some marginals for DiscreteValues==all1
Vector marginals = Vector::Zero(15);
double joint_12_14 = 0, joint_9_12_14 = 0, joint_8_12_14 = 0, joint_8_12 = 0,
joint82 = 0, joint12 = 0, joint24 = 0, joint45 = 0, joint46 = 0,
joint_4_11 = 0, joint_11_13 = 0, joint_11_13_14 = 0,
joint_11_12_13_14 = 0, joint_9_11_12_13 = 0, joint_8_11_12_13 = 0;
for (size_t i = 0; i < allPosbValues.size(); ++i) {
DiscreteValues x = allPosbValues[i];
/* ************************************************************************* */
// Check calculation of separator marginals
TEST(DiscreteBayesTree, SeparatorMarginals) {
TestFixture self;
// Calculate some marginals for DiscreteValues==all1
double marginal_14 = 0, joint_8_12 = 0;
for (auto& x : self.assignments) {
double px = self.bayesTree->evaluate(x);
for (size_t i = 0; i < 15; i++)
if (x[i]) marginals[i] += px;
if (x[12] && x[14]) {
joint_12_14 += px;
if (x[9]) joint_9_12_14 += px;
if (x[8]) joint_8_12_14 += px;
}
if (x[8] && x[12]) joint_8_12 += px;
if (x[2]) {
if (x[8]) joint82 += px;
if (x[1]) joint12 += px;
}
if (x[4]) {
if (x[2]) joint24 += px;
if (x[5]) joint45 += px;
if (x[6]) joint46 += px;
if (x[11]) joint_4_11 += px;
}
if (x[14]) marginal_14 += px;
}
DiscreteValues all1 = self.assignments.back();
// check separator marginal P(S0)
auto clique = (*self.bayesTree)[0];
DiscreteFactorGraph separatorMarginal0 =
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(joint_8_12, separatorMarginal0(all1), 1e-9);
// check separator marginal P(S9), should be P(14)
clique = (*self.bayesTree)[9];
DiscreteFactorGraph separatorMarginal9 =
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(marginal_14, separatorMarginal9(all1), 1e-9);
// check separator marginal of root, should be empty
clique = (*self.bayesTree)[11];
DiscreteFactorGraph separatorMarginal11 =
clique->separatorMarginal(EliminateDiscrete);
LONGS_EQUAL(0, separatorMarginal11.size());
}
/* ************************************************************************* */
// Check shortcuts in the tree
TEST(DiscreteBayesTree, Shortcuts) {
TestFixture self;
// Calculate some marginals for DiscreteValues==all1
double joint_11_13 = 0, joint_11_13_14 = 0, joint_11_12_13_14 = 0,
joint_9_11_12_13 = 0, joint_8_11_12_13 = 0;
for (auto& x : self.assignments) {
double px = self.bayesTree->evaluate(x);
if (x[11] && x[13]) {
joint_11_13 += px;
if (x[8] && x[12]) joint_8_11_12_13 += px;
@ -148,32 +161,12 @@ TEST(DiscreteBayesTree, ThinTree) {
}
}
}
DiscreteValues all1 = allPosbValues.back();
DiscreteValues all1 = self.assignments.back();
// check separator marginal P(S0)
auto clique = (*self.bayesTree)[0];
DiscreteFactorGraph separatorMarginal0 =
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(joint_8_12, separatorMarginal0(all1), 1e-9);
DOUBLES_EQUAL(joint_12_14, 0.1875, 1e-9);
DOUBLES_EQUAL(joint_8_12_14, 0.0375, 1e-9);
DOUBLES_EQUAL(joint_9_12_14, 0.15, 1e-9);
// check separator marginal P(S9), should be P(14)
clique = (*self.bayesTree)[9];
DiscreteFactorGraph separatorMarginal9 =
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(marginals[14], separatorMarginal9(all1), 1e-9);
// check separator marginal of root, should be empty
clique = (*self.bayesTree)[11];
DiscreteFactorGraph separatorMarginal11 =
clique->separatorMarginal(EliminateDiscrete);
LONGS_EQUAL(0, separatorMarginal11.size());
auto R = self.bayesTree->roots().front();
// check shortcut P(S9||R) to root
clique = (*self.bayesTree)[9];
auto clique = (*self.bayesTree)[9];
DiscreteBayesNet shortcut = clique->shortcut(R, EliminateDiscrete);
LONGS_EQUAL(1, shortcut.size());
DOUBLES_EQUAL(joint_11_13_14 / joint_11_13, shortcut.evaluate(all1), 1e-9);
@ -202,15 +195,67 @@ TEST(DiscreteBayesTree, ThinTree) {
shortcut.print("shortcut:");
}
}
}
/* ************************************************************************* */
// Check all marginals
TEST(DiscreteBayesTree, MarginalFactors) {
TestFixture self;
Vector marginals = Vector::Zero(15);
for (size_t i = 0; i < self.assignments.size(); ++i) {
DiscreteValues& x = self.assignments[i];
double px = self.bayesTree->evaluate(x);
for (size_t i = 0; i < 15; i++)
if (x[i]) marginals[i] += px;
}
// Check all marginals
DiscreteFactor::shared_ptr marginalFactor;
DiscreteValues all1 = self.assignments.back();
for (size_t i = 0; i < 15; i++) {
marginalFactor = self.bayesTree->marginalFactor(i, EliminateDiscrete);
auto marginalFactor = self.bayesTree->marginalFactor(i, EliminateDiscrete);
double actual = (*marginalFactor)(all1);
DOUBLES_EQUAL(marginals[i], actual, 1e-9);
}
}
/* ************************************************************************* */
// Check a number of joint marginals.
TEST(DiscreteBayesTree, Joints) {
TestFixture self;
// Calculate some marginals for DiscreteValues==all1
Vector marginals = Vector::Zero(15);
double joint_12_14 = 0, joint_9_12_14 = 0, joint_8_12_14 = 0, joint82 = 0,
joint12 = 0, joint24 = 0, joint45 = 0, joint46 = 0, joint_4_11 = 0;
for (size_t i = 0; i < self.assignments.size(); ++i) {
DiscreteValues& x = self.assignments[i];
double px = self.bayesTree->evaluate(x);
for (size_t i = 0; i < 15; i++)
if (x[i]) marginals[i] += px;
if (x[12] && x[14]) {
joint_12_14 += px;
if (x[9]) joint_9_12_14 += px;
if (x[8]) joint_8_12_14 += px;
}
if (x[2]) {
if (x[8]) joint82 += px;
if (x[1]) joint12 += px;
}
if (x[4]) {
if (x[2]) joint24 += px;
if (x[5]) joint45 += px;
if (x[6]) joint46 += px;
if (x[11]) joint_4_11 += px;
}
}
// regression tests:
DOUBLES_EQUAL(joint_12_14, 0.1875, 1e-9);
DOUBLES_EQUAL(joint_8_12_14, 0.0375, 1e-9);
DOUBLES_EQUAL(joint_9_12_14, 0.15, 1e-9);
DiscreteValues all1 = self.assignments.back();
DiscreteBayesNet::shared_ptr actualJoint;
// Check joint P(8, 2)
@ -240,8 +285,8 @@ TEST(DiscreteBayesTree, ThinTree) {
/* ************************************************************************* */
TEST(DiscreteBayesTree, Dot) {
const TestFixture self;
string actual = self.bayesTree->dot();
TestFixture self;
std::string actual = self.bayesTree->dot();
EXPECT(actual ==
"digraph G{\n"
"0[label=\"13, 11, 6, 7\"];\n"
@ -268,6 +313,62 @@ TEST(DiscreteBayesTree, Dot) {
"}");
}
/* ************************************************************************* */
// Check that we can have a multi-frontal lookup table
TEST(DiscreteBayesTree, Lookup) {
using gtsam::symbol_shorthand::A;
using gtsam::symbol_shorthand::X;
// Make a small planning-like graph: 3 states, 2 actions
DiscreteFactorGraph graph;
const DiscreteKey x1{X(1), 3}, x2{X(2), 3}, x3{X(3), 3};
const DiscreteKey a1{A(1), 2}, a2{A(2), 2};
// Constraint on start and goal
graph.add(DiscreteKeys{x1}, std::vector<double>{1, 0, 0});
graph.add(DiscreteKeys{x3}, std::vector<double>{0, 0, 1});
// Should I stay or should I go?
// "Reward" (exp(-cost)) for an action is 10, and rewards multiply:
const double r = 10;
std::vector<double> table{
r, 0, 0, 0, r, 0, // x1 = 0
0, r, 0, 0, 0, r, // x1 = 1
0, 0, r, 0, 0, r // x1 = 2
};
graph.add(DiscreteKeys{x1, a1, x2}, table);
graph.add(DiscreteKeys{x2, a2, x3}, table);
// eliminate for MPE (maximum probable explanation).
Ordering ordering{A(2), X(3), X(1), A(1), X(2)};
auto lookup = graph.eliminateMultifrontal(ordering, EliminateForMPE);
// Check that the lookup table is correct
EXPECT_LONGS_EQUAL(2, lookup->size());
auto lookup_x1_a1_x2 = (*lookup)[X(1)]->conditional();
EXPECT_LONGS_EQUAL(3, lookup_x1_a1_x2->frontals().size());
// check that sum is 1.0 (not 100, as we now normalize)
DiscreteValues empty;
EXPECT_DOUBLES_EQUAL(1.0, (*lookup_x1_a1_x2->sum(3))(empty), 1e-9);
// And that only non-zero reward is for x1 a1 x2 == 0 1 1
EXPECT_DOUBLES_EQUAL(1.0, (*lookup_x1_a1_x2)({{X(1),0},{A(1),1},{X(2),1}}), 1e-9);
auto lookup_a2_x3 = (*lookup)[X(3)]->conditional();
// check that the sum depends on x2 and is non-zero only for x2 \in {1,2}
auto sum_x2 = lookup_a2_x3->sum(2);
EXPECT_DOUBLES_EQUAL(0, (*sum_x2)({{X(2),0}}), 1e-9);
EXPECT_DOUBLES_EQUAL(1.0, (*sum_x2)({{X(2),1}}), 1e-9);
EXPECT_DOUBLES_EQUAL(2.0, (*sum_x2)({{X(2),2}}), 1e-9);
EXPECT_LONGS_EQUAL(2, lookup_a2_x3->frontals().size());
// And that the non-zero rewards are for
// x2 a2 x3 == 1 1 2
EXPECT_DOUBLES_EQUAL(1.0, (*lookup_a2_x3)({{X(2),1},{A(2),1},{X(3),2}}), 1e-9);
// x2 a2 x3 == 2 0 2
EXPECT_DOUBLES_EQUAL(1.0, (*lookup_a2_x3)({{X(2),2},{A(2),0},{X(3),2}}), 1e-9);
// x2 a2 x3 == 2 1 2
EXPECT_DOUBLES_EQUAL(1.0, (*lookup_a2_x3)({{X(2),2},{A(2),1},{X(3),2}}), 1e-9);
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -93,8 +93,7 @@ void printTime(map<double, pair<chrono::microseconds, chrono::microseconds>>
for (auto&& kv : measured_time) {
cout << "dropout: " << kv.first
<< " | TableFactor time: " << kv.second.first.count()
<< " | DecisionTreeFactor time: " << kv.second.second.count() <<
endl;
<< " | DecisionTreeFactor time: " << kv.second.second.count() << endl;
}
}
@ -361,6 +360,39 @@ TEST(TableFactor, htmlWithValueFormatter) {
EXPECT(actual == expected);
}
/* ************************************************************************* */
TEST(TableFactor, Unary) {
// Declare a bunch of keys
DiscreteKey X(0, 2), Y(1, 3);
// Create factors
TableFactor f(X & Y, "2 5 3 6 2 7");
auto op = [](const double x) { return 2 * x; };
auto g = f.apply(op);
TableFactor expected(X & Y, "4 10 6 12 4 14");
EXPECT(assert_equal(g, expected));
auto sq_op = [](const double x) { return x * x; };
auto g_sq = f.apply(sq_op);
TableFactor expected_sq(X & Y, "4 25 9 36 4 49");
EXPECT(assert_equal(g_sq, expected_sq));
}
/* ************************************************************************* */
TEST(TableFactor, UnaryAssignment) {
// Declare a bunch of keys
DiscreteKey X(0, 2), Y(1, 3);
// Create factors
TableFactor f(X & Y, "2 5 3 6 2 7");
auto op = [](const Assignment<Key>& key, const double x) { return 2 * x; };
auto g = f.apply(op);
TableFactor expected(X & Y, "4 10 6 12 4 14");
EXPECT(assert_equal(g, expected));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -146,7 +146,7 @@ class GTSAM_EXPORT Line3 {
* @param Dline - OptionalJacobian of transformed line with respect to l
* @return Transformed line in camera frame
*/
friend Line3 transformTo(const Pose3 &wTc, const Line3 &wL,
GTSAM_EXPORT friend Line3 transformTo(const Pose3 &wTc, const Line3 &wL,
OptionalJacobian<4, 6> Dpose,
OptionalJacobian<4, 4> Dline);
};

View File

@ -597,6 +597,25 @@ TEST(Rot3, quaternion) {
EXPECT(assert_equal(expected2, actual2));
}
/* ************************************************************************* */
TEST(Rot3, ConvertQuaternion) {
Eigen::Quaterniond eigenQuaternion;
eigenQuaternion.w() = 1.0;
eigenQuaternion.x() = 2.0;
eigenQuaternion.y() = 3.0;
eigenQuaternion.z() = 4.0;
EXPECT_DOUBLES_EQUAL(1, eigenQuaternion.w(), 1e-9);
EXPECT_DOUBLES_EQUAL(2, eigenQuaternion.x(), 1e-9);
EXPECT_DOUBLES_EQUAL(3, eigenQuaternion.y(), 1e-9);
EXPECT_DOUBLES_EQUAL(4, eigenQuaternion.z(), 1e-9);
Rot3 R(eigenQuaternion);
EXPECT_DOUBLES_EQUAL(1, R.toQuaternion().w(), 1e-9);
EXPECT_DOUBLES_EQUAL(2, R.toQuaternion().x(), 1e-9);
EXPECT_DOUBLES_EQUAL(3, R.toQuaternion().y(), 1e-9);
EXPECT_DOUBLES_EQUAL(4, R.toQuaternion().z(), 1e-9);
}
/* ************************************************************************* */
Matrix Cayley(const Matrix& A) {
Matrix::Index n = A.cols();

View File

@ -37,24 +37,6 @@ bool HybridBayesNet::equals(const This &bn, double tol) const {
return Base::equals(bn, tol);
}
/* ************************************************************************* */
DecisionTreeFactor::shared_ptr HybridBayesNet::discreteConditionals() const {
AlgebraicDecisionTree<Key> discreteProbs;
// The canonical decision tree factor which will get
// the discrete conditionals added to it.
DecisionTreeFactor discreteProbsFactor;
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
// Convert to a DecisionTreeFactor and add it to the main factor.
DecisionTreeFactor f(*conditional->asDiscrete());
discreteProbsFactor = discreteProbsFactor * f;
}
}
return std::make_shared<DecisionTreeFactor>(discreteProbsFactor);
}
/* ************************************************************************* */
/**
* @brief Helper function to get the pruner functional.
@ -144,53 +126,52 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
}
/* ************************************************************************* */
void HybridBayesNet::updateDiscreteConditionals(
const DecisionTreeFactor &prunedDiscreteProbs) {
KeyVector prunedTreeKeys = prunedDiscreteProbs.keys();
DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals(
size_t maxNrLeaves) {
// Get the joint distribution of only the discrete keys
gttic_(HybridBayesNet_PruneDiscreteConditionals);
// The joint discrete probability.
DiscreteConditional discreteProbs;
std::vector<size_t> discrete_factor_idxs;
// Record frontal keys so we can maintain ordering
Ordering discrete_frontals;
// Loop with index since we need it later.
for (size_t i = 0; i < this->size(); i++) {
HybridConditional::shared_ptr conditional = this->at(i);
auto conditional = this->at(i);
if (conditional->isDiscrete()) {
auto discrete = conditional->asDiscrete();
discreteProbs = discreteProbs * (*conditional->asDiscrete());
// Convert pointer from conditional to factor
auto discreteTree =
std::dynamic_pointer_cast<DecisionTreeFactor::ADT>(discrete);
// Apply prunerFunc to the underlying AlgebraicDecisionTree
DecisionTreeFactor::ADT prunedDiscreteTree =
discreteTree->apply(prunerFunc(prunedDiscreteProbs, *conditional));
gttic_(HybridBayesNet_MakeConditional);
// Create the new (hybrid) conditional
KeyVector frontals(discrete->frontals().begin(),
discrete->frontals().end());
auto prunedDiscrete = std::make_shared<DiscreteLookupTable>(
frontals.size(), conditional->discreteKeys(), prunedDiscreteTree);
conditional = std::make_shared<HybridConditional>(prunedDiscrete);
gttoc_(HybridBayesNet_MakeConditional);
// Add it back to the BayesNet
this->at(i) = conditional;
Ordering conditional_keys(conditional->frontals());
discrete_frontals += conditional_keys;
discrete_factor_idxs.push_back(i);
}
}
const DecisionTreeFactor prunedDiscreteProbs =
discreteProbs.prune(maxNrLeaves);
gttoc_(HybridBayesNet_PruneDiscreteConditionals);
// Eliminate joint probability back into conditionals
gttic_(HybridBayesNet_UpdateDiscreteConditionals);
DiscreteFactorGraph dfg{prunedDiscreteProbs};
DiscreteBayesNet::shared_ptr dbn = dfg.eliminateSequential(discrete_frontals);
// Assign pruned discrete conditionals back at the correct indices.
for (size_t i = 0; i < discrete_factor_idxs.size(); i++) {
size_t idx = discrete_factor_idxs.at(i);
this->at(idx) = std::make_shared<HybridConditional>(dbn->at(i));
}
gttoc_(HybridBayesNet_UpdateDiscreteConditionals);
return prunedDiscreteProbs;
}
/* ************************************************************************* */
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
// Get the decision tree of only the discrete keys
gttic_(HybridBayesNet_PruneDiscreteConditionals);
DecisionTreeFactor::shared_ptr discreteConditionals =
this->discreteConditionals();
const DecisionTreeFactor prunedDiscreteProbs =
discreteConditionals->prune(maxNrLeaves);
gttoc_(HybridBayesNet_PruneDiscreteConditionals);
DecisionTreeFactor prunedDiscreteProbs =
this->pruneDiscreteConditionals(maxNrLeaves);
gttic_(HybridBayesNet_UpdateDiscreteConditionals);
this->updateDiscreteConditionals(prunedDiscreteProbs);
gttoc_(HybridBayesNet_UpdateDiscreteConditionals);
/* To Prune, we visitWith every leaf in the GaussianMixture.
/* To prune, we visitWith every leaf in the GaussianMixture.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.
*

View File

@ -136,13 +136,6 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
*/
VectorValues optimize(const DiscreteValues &assignment) const;
/**
* @brief Get all the discrete conditionals as a decision tree factor.
*
* @return DecisionTreeFactor::shared_ptr
*/
DecisionTreeFactor::shared_ptr discreteConditionals() const;
/**
* @brief Sample from an incomplete BayesNet, given missing variables.
*
@ -222,11 +215,11 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
private:
/**
* @brief Update the discrete conditionals with the pruned versions.
* @brief Prune all the discrete conditionals.
*
* @param prunedDiscreteProbs
* @param maxNrLeaves
*/
void updateDiscreteConditionals(const DecisionTreeFactor &prunedDiscreteProbs);
DecisionTreeFactor pruneDiscreteConditionals(size_t maxNrLeaves);
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */

View File

@ -20,6 +20,7 @@
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DecisionTree.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/discrete/TableFactor.h>
#include <gtsam/inference/Factor.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/Values.h>

View File

@ -17,7 +17,6 @@
* @date January, 2023
*/
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/hybrid/HybridFactorGraph.h>
namespace gtsam {
@ -26,7 +25,7 @@ namespace gtsam {
std::set<DiscreteKey> HybridFactorGraph::discreteKeys() const {
std::set<DiscreteKey> keys;
for (auto& factor : factors_) {
if (auto p = std::dynamic_pointer_cast<DecisionTreeFactor>(factor)) {
if (auto p = std::dynamic_pointer_cast<DiscreteFactor>(factor)) {
for (const DiscreteKey& key : p->discreteKeys()) {
keys.insert(key);
}
@ -67,6 +66,8 @@ const KeySet HybridFactorGraph::continuousKeySet() const {
for (const Key& key : p->continuousKeys()) {
keys.insert(key);
}
} else if (auto p = std::dynamic_pointer_cast<GaussianFactor>(factor)) {
keys.insert(p->keys().begin(), p->keys().end());
}
}
return keys;

View File

@ -48,8 +48,6 @@
#include <utility>
#include <vector>
// #define HYBRID_TIMING
namespace gtsam {
/// Specialize EliminateableFactorGraph for HybridGaussianFactorGraph:
@ -120,7 +118,7 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
// TODO(dellaert): in C++20, we can use std::visit.
continue;
}
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
} else if (dynamic_pointer_cast<DiscreteFactor>(f)) {
// Don't do anything for discrete-only factors
// since we want to eliminate continuous values only.
continue;
@ -167,8 +165,8 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
DiscreteFactorGraph dfg;
for (auto &f : factors) {
if (auto dtf = dynamic_pointer_cast<DecisionTreeFactor>(f)) {
dfg.push_back(dtf);
if (auto df = dynamic_pointer_cast<DiscreteFactor>(f)) {
dfg.push_back(df);
} else if (auto orphan = dynamic_pointer_cast<OrphanWrapper>(f)) {
// Ignore orphaned clique.
// TODO(dellaert): is this correct? If so explain here.
@ -262,6 +260,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
};
DecisionTree<Key, double> probabilities(eliminationResults, probability);
return {
std::make_shared<HybridConditional>(gaussianMixture),
std::make_shared<DecisionTreeFactor>(discreteSeparator, probabilities)};
@ -348,64 +347,68 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
// When the number of assignments is large we may encounter stack overflows.
// However this is also the case with iSAM2, so no pressure :)
// PREPROCESS: Identify the nature of the current elimination
// TODO(dellaert): just check the factors:
// Check the factors:
// 1. if all factors are discrete, then we can do discrete elimination:
// 2. if all factors are continuous, then we can do continuous elimination:
// 3. if not, we do hybrid elimination:
// First, identify the separator keys, i.e. all keys that are not frontal.
KeySet separatorKeys;
bool only_discrete = true, only_continuous = true;
for (auto &&factor : factors) {
separatorKeys.insert(factor->begin(), factor->end());
}
// remove frontals from separator
for (auto &k : frontalKeys) {
separatorKeys.erase(k);
}
// Build a map from keys to DiscreteKeys
auto mapFromKeyToDiscreteKey = factors.discreteKeyMap();
// Fill in discrete frontals and continuous frontals.
std::set<DiscreteKey> discreteFrontals;
KeySet continuousFrontals;
for (auto &k : frontalKeys) {
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
discreteFrontals.insert(mapFromKeyToDiscreteKey.at(k));
} else {
continuousFrontals.insert(k);
if (auto hybrid_factor = std::dynamic_pointer_cast<HybridFactor>(factor)) {
if (hybrid_factor->isDiscrete()) {
only_continuous = false;
} else if (hybrid_factor->isContinuous()) {
only_discrete = false;
} else if (hybrid_factor->isHybrid()) {
only_continuous = false;
only_discrete = false;
}
} else if (auto cont_factor =
std::dynamic_pointer_cast<GaussianFactor>(factor)) {
only_discrete = false;
} else if (auto discrete_factor =
std::dynamic_pointer_cast<DiscreteFactor>(factor)) {
only_continuous = false;
}
}
// Fill in discrete discrete separator keys and continuous separator keys.
std::set<DiscreteKey> discreteSeparatorSet;
KeyVector continuousSeparator;
for (auto &k : separatorKeys) {
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
discreteSeparatorSet.insert(mapFromKeyToDiscreteKey.at(k));
} else {
continuousSeparator.push_back(k);
}
}
// Check if we have any continuous keys:
const bool discrete_only =
continuousFrontals.empty() && continuousSeparator.empty();
// NOTE: We should really defer the product here because of pruning
if (discrete_only) {
if (only_discrete) {
// Case 1: we are only dealing with discrete
return discreteElimination(factors, frontalKeys);
} else if (mapFromKeyToDiscreteKey.empty()) {
} else if (only_continuous) {
// Case 2: we are only dealing with continuous
return continuousElimination(factors, frontalKeys);
} else {
// Case 3: We are now in the hybrid land!
KeySet frontalKeysSet(frontalKeys.begin(), frontalKeys.end());
// Find all the keys in the set of continuous keys
// which are not in the frontal keys. This is our continuous separator.
KeyVector continuousSeparator;
auto continuousKeySet = factors.continuousKeySet();
std::set_difference(
continuousKeySet.begin(), continuousKeySet.end(),
frontalKeysSet.begin(), frontalKeysSet.end(),
std::inserter(continuousSeparator, continuousSeparator.begin()));
// Similarly for the discrete separator.
KeySet discreteSeparatorSet;
std::set<DiscreteKey> discreteSeparator;
auto discreteKeySet = factors.discreteKeySet();
std::set_difference(
discreteKeySet.begin(), discreteKeySet.end(), frontalKeysSet.begin(),
frontalKeysSet.end(),
std::inserter(discreteSeparatorSet, discreteSeparatorSet.begin()));
// Convert from set of keys to set of DiscreteKeys
auto discreteKeyMap = factors.discreteKeyMap();
for (auto key : discreteSeparatorSet) {
discreteSeparator.insert(discreteKeyMap.at(key));
}
return hybridElimination(factors, frontalKeys, continuousSeparator,
discreteSeparatorSet);
discreteSeparator);
}
}
@ -429,7 +432,7 @@ AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::error(
// Add the gaussian factor error to every leaf of the error tree.
error_tree = error_tree.apply(
[error](double leaf_value) { return leaf_value + error; });
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
} else if (dynamic_pointer_cast<DiscreteFactor>(f)) {
// If factor at `idx` is discrete-only, we skip.
continue;
} else {

View File

@ -40,6 +40,7 @@ class HybridEliminationTree;
class HybridBayesTree;
class HybridJunctionTree;
class DecisionTreeFactor;
class TableFactor;
class JacobianFactor;
class HybridValues;

View File

@ -66,7 +66,7 @@ struct HybridConstructorTraversalData {
for (auto& k : hf->discreteKeys()) {
data.discreteKeys.insert(k.first);
}
} else if (auto hf = std::dynamic_pointer_cast<DecisionTreeFactor>(f)) {
} else if (auto hf = std::dynamic_pointer_cast<DiscreteFactor>(f)) {
for (auto& k : hf->discreteKeys()) {
data.discreteKeys.insert(k.first);
}
@ -161,7 +161,7 @@ HybridJunctionTree::HybridJunctionTree(
Data rootData(0);
rootData.junctionTreeNode =
std::make_shared<typename Base::Node>(); // Make a dummy node to gather
// the junction tree roots
// the junction tree roots
treeTraversal::DepthFirstForest(eliminationTree, rootData,
Data::ConstructorTraversalVisitorPre,
Data::ConstructorTraversalVisitorPost);

View File

@ -17,6 +17,7 @@
*/
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/TableFactor.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
@ -67,7 +68,7 @@ HybridGaussianFactorGraph::shared_ptr HybridNonlinearFactorGraph::linearize(
} else if (auto nlf = dynamic_pointer_cast<NonlinearFactor>(f)) {
const GaussianFactor::shared_ptr& gf = nlf->linearize(continuousValues);
linearFG->push_back(gf);
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
} else if (dynamic_pointer_cast<DiscreteFactor>(f)) {
// If discrete-only: doesn't need linearization.
linearFG->push_back(f);
} else if (auto gmf = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {

View File

@ -72,7 +72,8 @@ void HybridSmoother::update(HybridGaussianFactorGraph graph,
addConditionals(graph, hybridBayesNet_, ordering);
// Eliminate.
auto bayesNetFragment = graph.eliminateSequential(ordering);
HybridBayesNet::shared_ptr bayesNetFragment =
graph.eliminateSequential(ordering);
/// Prune
if (maxNrLeaves) {
@ -96,7 +97,8 @@ HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph,
HybridGaussianFactorGraph graph(originalGraph);
HybridBayesNet hybridBayesNet(originalHybridBayesNet);
// If we are not at the first iteration, means we have conditionals to add.
// If hybridBayesNet is not empty,
// it means we have conditionals to add to the factor graph.
if (!hybridBayesNet.empty()) {
// We add all relevant conditional mixtures on the last continuous variable
// in the previous `hybridBayesNet` to the graph

View File

@ -35,14 +35,11 @@ class HybridValues {
};
#include <gtsam/hybrid/HybridFactor.h>
virtual class HybridFactor {
virtual class HybridFactor : gtsam::Factor {
void print(string s = "HybridFactor\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::HybridFactor& other, double tol = 1e-9) const;
bool empty() const;
size_t size() const;
gtsam::KeyVector keys() const;
// Standard interface:
double error(const gtsam::HybridValues &values) const;
@ -179,6 +176,7 @@ class HybridGaussianFactorGraph {
void push_back(const gtsam::HybridBayesTree& bayesTree);
void push_back(const gtsam::GaussianMixtureFactor* gmm);
void push_back(gtsam::DecisionTreeFactor* factor);
void push_back(gtsam::TableFactor* factor);
void push_back(gtsam::JacobianFactor* factor);
bool empty() const;

View File

@ -202,31 +202,16 @@ struct Switching {
* @brief Add "mode chain" to HybridNonlinearFactorGraph from M(0) to M(K-2).
* E.g. if K=4, we want M0, M1 and M2.
*
* @param fg The nonlinear factor graph to which the mode chain is added.
* @param fg The factor graph to which the mode chain is added.
*/
void addModeChain(HybridNonlinearFactorGraph *fg,
template <typename FACTORGRAPH>
void addModeChain(FACTORGRAPH *fg,
std::string discrete_transition_prob = "1/2 3/2") {
fg->emplace_shared<DiscreteDistribution>(modes[0], "1/1");
fg->template emplace_shared<DiscreteDistribution>(modes[0], "1/1");
for (size_t k = 0; k < K - 2; k++) {
auto parents = {modes[k]};
fg->emplace_shared<DiscreteConditional>(modes[k + 1], parents,
discrete_transition_prob);
}
}
/**
* @brief Add "mode chain" to HybridGaussianFactorGraph from M(0) to M(K-2).
* E.g. if K=4, we want M0, M1 and M2.
*
* @param fg The gaussian factor graph to which the mode chain is added.
*/
void addModeChain(HybridGaussianFactorGraph *fg,
std::string discrete_transition_prob = "1/2 3/2") {
fg->emplace_shared<DiscreteDistribution>(modes[0], "1/1");
for (size_t k = 0; k < K - 2; k++) {
auto parents = {modes[k]};
fg->emplace_shared<DiscreteConditional>(modes[k + 1], parents,
discrete_transition_prob);
fg->template emplace_shared<DiscreteConditional>(
modes[k + 1], parents, discrete_transition_prob);
}
}
};

View File

@ -108,7 +108,7 @@ TEST(GaussianMixtureFactor, Printing) {
std::string expected =
R"(Hybrid [x1 x2; 1]{
Choice(1)
0 Leaf :
0 Leaf [1] :
A[x1] = [
0;
0
@ -120,7 +120,7 @@ TEST(GaussianMixtureFactor, Printing) {
b = [ 0 0 ]
No noise model
1 Leaf :
1 Leaf [1] :
A[x1] = [
0;
0

View File

@ -231,7 +231,7 @@ TEST(HybridBayesNet, Pruning) {
auto prunedTree = prunedBayesNet.evaluate(delta.continuous());
// Regression test on pruned logProbability tree
std::vector<double> pruned_leaves = {0.0, 20.346113, 0.0, 19.738098};
std::vector<double> pruned_leaves = {0.0, 32.713418, 0.0, 31.735823};
AlgebraicDecisionTree<Key> expected_pruned(discrete_keys, pruned_leaves);
EXPECT(assert_equal(expected_pruned, prunedTree, 1e-6));
@ -248,8 +248,10 @@ TEST(HybridBayesNet, Pruning) {
logProbability +=
posterior->at(4)->asDiscrete()->logProbability(hybridValues);
// Regression
double density = exp(logProbability);
EXPECT_DOUBLES_EQUAL(density, actualTree(discrete_values), 1e-9);
EXPECT_DOUBLES_EQUAL(density,
1.6078460548731697 * actualTree(discrete_values), 1e-6);
EXPECT_DOUBLES_EQUAL(density, prunedTree(discrete_values), 1e-9);
EXPECT_DOUBLES_EQUAL(logProbability, posterior->logProbability(hybridValues),
1e-9);
@ -283,20 +285,30 @@ TEST(HybridBayesNet, UpdateDiscreteConditionals) {
EXPECT_LONGS_EQUAL(7, posterior->size());
size_t maxNrLeaves = 3;
auto discreteConditionals = posterior->discreteConditionals();
DiscreteConditional discreteConditionals;
for (auto&& conditional : *posterior) {
if (conditional->isDiscrete()) {
discreteConditionals =
discreteConditionals * (*conditional->asDiscrete());
}
}
const DecisionTreeFactor::shared_ptr prunedDecisionTree =
std::make_shared<DecisionTreeFactor>(
discreteConditionals->prune(maxNrLeaves));
discreteConditionals.prune(maxNrLeaves));
EXPECT_LONGS_EQUAL(maxNrLeaves + 2 /*2 zero leaves*/,
prunedDecisionTree->nrLeaves());
auto original_discrete_conditionals = *(posterior->at(4)->asDiscrete());
// regression
DiscreteKeys dkeys{{M(0), 2}, {M(1), 2}, {M(2), 2}};
DecisionTreeFactor::ADT potentials(
dkeys, std::vector<double>{0, 0, 0, 0.505145423, 0, 1, 0, 0.494854577});
DiscreteConditional expected_discrete_conditionals(1, dkeys, potentials);
// Prune!
posterior->prune(maxNrLeaves);
// Functor to verify values against the original_discrete_conditionals
// Functor to verify values against the expected_discrete_conditionals
auto checker = [&](const Assignment<Key>& assignment,
double probability) -> double {
// typecast so we can use this to get probability value
@ -304,7 +316,7 @@ TEST(HybridBayesNet, UpdateDiscreteConditionals) {
if (prunedDecisionTree->operator()(choices) == 0) {
EXPECT_DOUBLES_EQUAL(0.0, probability, 1e-9);
} else {
EXPECT_DOUBLES_EQUAL(original_discrete_conditionals(choices), probability,
EXPECT_DOUBLES_EQUAL(expected_discrete_conditionals(choices), probability,
1e-9);
}
return 0.0;

View File

@ -146,7 +146,7 @@ TEST(HybridBayesTree, Optimize) {
DiscreteFactorGraph dfg;
for (auto&& f : *remainingFactorGraph) {
auto discreteFactor = dynamic_pointer_cast<DecisionTreeFactor>(f);
auto discreteFactor = dynamic_pointer_cast<DiscreteFactor>(f);
assert(discreteFactor);
dfg.push_back(discreteFactor);
}

View File

@ -140,6 +140,61 @@ TEST(HybridEstimation, IncrementalSmoother) {
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridEstimation, ISAM) {
size_t K = 15;
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
// Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
HybridNonlinearISAM isam;
HybridNonlinearFactorGraph graph;
Values initial;
// gttic_(Estimation);
// Add the X(0) prior
graph.push_back(switching.nonlinearFactorGraph.at(0));
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
HybridGaussianFactorGraph linearized;
for (size_t k = 1; k < K; k++) {
// Motion Model
graph.push_back(switching.nonlinearFactorGraph.at(k));
// Measurement
graph.push_back(switching.nonlinearFactorGraph.at(k + K - 1));
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
isam.update(graph, initial, 3);
// isam.bayesTree().print("\n\n");
graph.resize(0);
initial.clear();
}
Values result = isam.estimate();
DiscreteValues assignment = isam.assignment();
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
EXPECT(assert_equal(expected_discrete, assignment));
Values expected_continuous;
for (size_t k = 0; k < K; k++) {
expected_continuous.insert(X(k), measurements[k]);
}
EXPECT(assert_equal(expected_continuous, result));
}
/**
* @brief A function to get a specific 1D robot motion problem as a linearized
* factor graph. This is the problem P(X|Z, M), i.e. estimating the continuous

View File

@ -18,7 +18,9 @@
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/utilities.h>
#include <gtsam/hybrid/HybridFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/nonlinear/PriorFactor.h>
using namespace std;
@ -37,6 +39,32 @@ TEST(HybridFactorGraph, Constructor) {
HybridFactorGraph fg;
}
/* ************************************************************************* */
// Test if methods to get keys work as expected.
TEST(HybridFactorGraph, Keys) {
HybridGaussianFactorGraph hfg;
// Add prior on x0
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
// Add factor between x0 and x1
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
// Add a gaussian mixture factor ϕ(x1, c1)
DiscreteKey m1(M(1), 2);
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, dt));
KeySet expected_continuous{X(0), X(1)};
EXPECT(
assert_container_equality(expected_continuous, hfg.continuousKeySet()));
KeySet expected_discrete{M(1)};
EXPECT(assert_container_equality(expected_discrete, hfg.discreteKeySet()));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -903,7 +903,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
// Test resulting posterior Bayes net has correct size:
EXPECT_LONGS_EQUAL(8, posterior->size());
// TODO(dellaert): this test fails - no idea why.
// Ratio test
EXPECT(ratioTest(bn, measurements, *posterior));
}

View File

@ -492,7 +492,7 @@ factor 0:
factor 1:
Hybrid [x0 x1; m0]{
Choice(m0)
0 Leaf :
0 Leaf [1] :
A[x0] = [
-1
]
@ -502,7 +502,7 @@ Hybrid [x0 x1; m0]{
b = [ -1 ]
No noise model
1 Leaf :
1 Leaf [1] :
A[x0] = [
-1
]
@ -516,7 +516,7 @@ Hybrid [x0 x1; m0]{
factor 2:
Hybrid [x1 x2; m1]{
Choice(m1)
0 Leaf :
0 Leaf [1] :
A[x1] = [
-1
]
@ -526,7 +526,7 @@ Hybrid [x1 x2; m1]{
b = [ -1 ]
No noise model
1 Leaf :
1 Leaf [1] :
A[x1] = [
-1
]
@ -550,16 +550,16 @@ factor 4:
b = [ -10 ]
No noise model
factor 5: P( m0 ):
Leaf 0.5
Leaf [2] 0.5
factor 6: P( m1 | m0 ):
Choice(m1)
0 Choice(m0)
0 0 Leaf 0.33333333
0 1 Leaf 0.6
0 0 Leaf [1] 0.33333333
0 1 Leaf [1] 0.6
1 Choice(m0)
1 0 Leaf 0.66666667
1 1 Leaf 0.4
1 0 Leaf [1] 0.66666667
1 1 Leaf [1] 0.4
)";
EXPECT(assert_print_equal(expected_hybridFactorGraph, linearizedFactorGraph));
@ -570,13 +570,13 @@ size: 3
conditional 0: Hybrid P( x0 | x1 m0)
Discrete Keys = (m0, 2),
Choice(m0)
0 Leaf p(x0 | x1)
0 Leaf [1] p(x0 | x1)
R = [ 10.0499 ]
S[x1] = [ -0.0995037 ]
d = [ -9.85087 ]
No noise model
1 Leaf p(x0 | x1)
1 Leaf [1] p(x0 | x1)
R = [ 10.0499 ]
S[x1] = [ -0.0995037 ]
d = [ -9.95037 ]
@ -586,26 +586,26 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
Discrete Keys = (m0, 2), (m1, 2),
Choice(m1)
0 Choice(m0)
0 0 Leaf p(x1 | x2)
0 0 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -9.99901 ]
No noise model
0 1 Leaf p(x1 | x2)
0 1 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -9.90098 ]
No noise model
1 Choice(m0)
1 0 Leaf p(x1 | x2)
1 0 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -10.098 ]
No noise model
1 1 Leaf p(x1 | x2)
1 1 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -10 ]
@ -615,14 +615,14 @@ conditional 2: Hybrid P( x2 | m0 m1)
Discrete Keys = (m0, 2), (m1, 2),
Choice(m1)
0 Choice(m0)
0 0 Leaf p(x2)
0 0 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.1489 ]
mean: 1 elements
x2: -1.0099
No noise model
0 1 Leaf p(x2)
0 1 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.1479 ]
mean: 1 elements
@ -630,14 +630,14 @@ conditional 2: Hybrid P( x2 | m0 m1)
No noise model
1 Choice(m0)
1 0 Leaf p(x2)
1 0 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.0504 ]
mean: 1 elements
x2: -1.0001
No noise model
1 1 Leaf p(x2)
1 1 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.0494 ]
mean: 1 elements

View File

@ -63,8 +63,8 @@ TEST(MixtureFactor, Printing) {
R"(Hybrid [x1 x2; 1]
MixtureFactor
Choice(1)
0 Leaf Nonlinear factor on 2 keys
1 Leaf Nonlinear factor on 2 keys
0 Leaf [1] Nonlinear factor on 2 keys
1 Leaf [1] Nonlinear factor on 2 keys
)";
EXPECT(assert_print_equal(expected, mixtureFactor));
}

View File

@ -140,9 +140,15 @@ namespace gtsam {
/** Access the conditional */
const sharedConditional& conditional() const { return conditional_; }
/** is this the root of a Bayes tree ? */
/// Return true if this clique is the root of a Bayes tree.
inline bool isRoot() const { return parent_.expired(); }
/// Return the number of children.
size_t nrChildren() const { return children.size(); }
/// Return the child at index i.
const derived_ptr operator[](size_t i) const { return children.at(i); }
/** The size of subtree rooted at this clique, i.e., nr of Cliques */
size_t treeSize() const;

View File

@ -49,7 +49,7 @@ class ClusterTree {
virtual ~Cluster() {}
const Cluster& operator[](size_t i) const {
return *(children[i]);
return *(children.at(i));
}
/// Construct from factors associated with a single key
@ -161,7 +161,7 @@ class ClusterTree {
}
const Cluster& operator[](size_t i) const {
return *(roots_[i]);
return *(roots_.at(i));
}
/// @}

View File

@ -74,8 +74,9 @@ namespace gtsam {
EliminationTreeType etree(asDerived(), (*variableIndex).get(), ordering);
const auto [bayesNet, factorGraph] = etree.eliminate(function);
// If any factors are remaining, the ordering was incomplete
if(!factorGraph->empty())
throw InconsistentEliminationRequested();
if(!factorGraph->empty()) {
throw InconsistentEliminationRequested(factorGraph->keys());
}
// Return the Bayes net
return bayesNet;
}
@ -136,8 +137,9 @@ namespace gtsam {
JunctionTreeType junctionTree(etree);
const auto [bayesTree, factorGraph] = junctionTree.eliminate(function);
// If any factors are remaining, the ordering was incomplete
if(!factorGraph->empty())
throw InconsistentEliminationRequested();
if(!factorGraph->empty()) {
throw InconsistentEliminationRequested(factorGraph->keys());
}
// Return the Bayes tree
return bayesTree;
}

View File

@ -51,12 +51,12 @@ namespace gtsam {
* algorithms. Any factor graph holding eliminateable factors can derive from this class to
* expose functions for computing marginals, conditional marginals, doing multifrontal and
* sequential elimination, etc. */
template<class FACTORGRAPH>
template<class FACTOR_GRAPH>
class EliminateableFactorGraph
{
private:
typedef EliminateableFactorGraph<FACTORGRAPH> This; ///< Typedef to this class.
typedef FACTORGRAPH FactorGraphType; ///< Typedef to factor graph type
typedef EliminateableFactorGraph<FACTOR_GRAPH> This; ///< Typedef to this class.
typedef FACTOR_GRAPH FactorGraphType; ///< Typedef to factor graph type
// Base factor type stored in this graph (private because derived classes will get this from
// their FactorGraph base class)
typedef typename EliminationTraits<FactorGraphType>::FactorType _FactorType;

View File

@ -30,7 +30,7 @@
namespace gtsam {
class Ordering: public KeyVector {
class GTSAM_EXPORT Ordering: public KeyVector {
protected:
typedef KeyVector Base;
@ -44,8 +44,7 @@ public:
typedef Ordering This; ///< Typedef to this class
typedef std::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
/// Create an empty ordering
GTSAM_EXPORT
/// Create an empty ordering
Ordering() {
}
@ -101,7 +100,7 @@ public:
}
/// Compute a fill-reducing ordering using COLAMD from a VariableIndex.
static GTSAM_EXPORT Ordering Colamd(const VariableIndex& variableIndex);
static Ordering Colamd(const VariableIndex& variableIndex);
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
/// for note on performance). This internally builds a VariableIndex so if you already have a
@ -126,7 +125,7 @@ public:
/// variables in \c constrainLast will be ordered in the same order specified in the KeyVector
/// \c constrainLast. If \c forceOrder is false, the variables in \c constrainLast will be
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
static GTSAM_EXPORT Ordering ColamdConstrainedLast(
static Ordering ColamdConstrainedLast(
const VariableIndex& variableIndex, const KeyVector& constrainLast,
bool forceOrder = false);
@ -154,7 +153,7 @@ public:
/// KeyVector \c constrainFirst. If \c forceOrder is false, the variables in \c
/// constrainFirst will be ordered before all the others, but will be rearranged by CCOLAMD to
/// reduce fill-in as well.
static GTSAM_EXPORT Ordering ColamdConstrainedFirst(
static Ordering ColamdConstrainedFirst(
const VariableIndex& variableIndex,
const KeyVector& constrainFirst, bool forceOrder = false);
@ -183,7 +182,7 @@ public:
/// appear in \c groups in arbitrary order. Any variables not present in \c groups will be
/// assigned to group 0. This function simply fills the \c cmember argument to CCOLAMD with the
/// supplied indices, see the CCOLAMD documentation for more information.
static GTSAM_EXPORT Ordering ColamdConstrained(
static Ordering ColamdConstrained(
const VariableIndex& variableIndex, const FastMap<Key, int>& groups);
/// Return a natural Ordering. Typically used by iterative solvers
@ -197,11 +196,11 @@ public:
/// METIS Formatting function
template<class FACTOR_GRAPH>
static GTSAM_EXPORT void CSRFormat(std::vector<int>& xadj,
static void CSRFormat(std::vector<int>& xadj,
std::vector<int>& adj, const FACTOR_GRAPH& graph);
/// Compute an ordering determined by METIS from a VariableIndex
static GTSAM_EXPORT Ordering Metis(const MetisIndex& met);
static Ordering Metis(const MetisIndex& met);
template<class FACTOR_GRAPH>
static Ordering Metis(const FACTOR_GRAPH& graph) {
@ -243,18 +242,16 @@ public:
/// @name Testable
/// @{
GTSAM_EXPORT
void print(const std::string& str = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const;
GTSAM_EXPORT
bool equals(const Ordering& other, double tol = 1e-9) const;
/// @}
private:
/// Internal COLAMD function
static GTSAM_EXPORT Ordering ColamdConstrained(
static Ordering ColamdConstrained(
const VariableIndex& variableIndex, std::vector<int>& cmember);
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION

View File

@ -104,6 +104,7 @@ class Ordering {
// Standard Constructors and Named Constructors
Ordering();
Ordering(const gtsam::Ordering& other);
Ordering(const std::vector<size_t>& keys);
template <
FACTOR_GRAPH = {gtsam::NonlinearFactorGraph, gtsam::DiscreteFactorGraph,
@ -148,7 +149,7 @@ class Ordering {
// Standard interface
size_t size() const;
size_t at(size_t key) const;
size_t at(size_t i) const;
void push_back(size_t key);
// enabling serialization functionality
@ -194,4 +195,15 @@ class VariableIndex {
size_t nEntries() const;
};
#include <gtsam/inference/Factor.h>
virtual class Factor {
void print(string s = "Factor\n", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void printKeys(string s = "") const;
bool equals(const gtsam::Factor& other, double tol = 1e-9) const;
bool empty() const;
size_t size() const;
gtsam::KeyVector keys() const;
};
} // namespace gtsam

View File

@ -0,0 +1,60 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file inferenceExceptions.cpp
* @brief Exceptions that may be thrown by inference algorithms
* @author Richard Roberts, Varun Agrawal
* @date Apr 25, 2013
*/
#include <gtsam/inference/inferenceExceptions.h>
#include <sstream>
namespace gtsam {
InconsistentEliminationRequested::InconsistentEliminationRequested(
const KeySet& keys, const KeyFormatter& key_formatter)
: keys_(keys.begin(), keys.end()), keyFormatter(key_formatter) {}
const char* InconsistentEliminationRequested::what() const noexcept {
// Format keys for printing
std::stringstream sstr;
size_t nrKeysToDisplay = std::min(size_t(4), keys_.size());
for (size_t i = 0; i < nrKeysToDisplay; i++) {
sstr << keyFormatter(keys_.at(i));
if (i < nrKeysToDisplay - 1) {
sstr << ", ";
}
}
if (keys_.size() > nrKeysToDisplay) {
sstr << ", ... (total " << keys_.size() << " keys)";
}
sstr << ".";
std::string keys = sstr.str();
std::string msg =
"An inference algorithm was called with inconsistent "
"arguments. "
"The\n"
"factor graph, ordering, or variable index were "
"inconsistent with "
"each\n"
"other, or a full elimination routine was called with "
"an ordering "
"that\n"
"does not include all of the variables.\n";
msg += ("Leftover keys after elimination: " + keys);
// `new` to allocate memory on heap instead of stack
return (new std::string(msg))->c_str();
}
} // namespace gtsam

View File

@ -12,30 +12,35 @@
/**
* @file inferenceExceptions.h
* @brief Exceptions that may be thrown by inference algorithms
* @author Richard Roberts
* @author Richard Roberts, Varun Agrawal
* @date Apr 25, 2013
*/
#pragma once
#include <gtsam/global_includes.h>
#include <gtsam/inference/Key.h>
#include <exception>
namespace gtsam {
/** An inference algorithm was called with inconsistent arguments. The factor graph, ordering, or
* variable index were inconsistent with each other, or a full elimination routine was called
* with an ordering that does not include all of the variables. */
class InconsistentEliminationRequested : public std::exception {
public:
InconsistentEliminationRequested() noexcept {}
~InconsistentEliminationRequested() noexcept override {}
const char* what() const noexcept override {
return
"An inference algorithm was called with inconsistent arguments. The\n"
"factor graph, ordering, or variable index were inconsistent with each\n"
"other, or a full elimination routine was called with an ordering that\n"
"does not include all of the variables.";
}
};
/** An inference algorithm was called with inconsistent arguments. The factor
* graph, ordering, or variable index were inconsistent with each other, or a
* full elimination routine was called with an ordering that does not include
* all of the variables. */
class InconsistentEliminationRequested : public std::exception {
KeyVector keys_;
const KeyFormatter& keyFormatter = DefaultKeyFormatter;
}
public:
InconsistentEliminationRequested() noexcept {}
InconsistentEliminationRequested(
const KeySet& keys,
const KeyFormatter& key_formatter = DefaultKeyFormatter);
~InconsistentEliminationRequested() noexcept override {}
const char* what() const noexcept override;
};
} // namespace gtsam

View File

@ -99,7 +99,7 @@ namespace gtsam {
/* ************************************************************************ */
void GaussianConditional::print(const string &s, const KeyFormatter& formatter) const {
cout << s << " p(";
cout << (s.empty() ? "" : s + " ") << "p(";
for (const_iterator it = beginFrontals(); it != endFrontals(); ++it) {
cout << formatter(*it) << (nrFrontals() > 1 ? " " : "");
}

View File

@ -261,8 +261,7 @@ class VectorValues {
};
#include <gtsam/linear/GaussianFactor.h>
virtual class GaussianFactor {
gtsam::KeyVector keys() const;
virtual class GaussianFactor : gtsam::Factor {
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
@ -273,8 +272,6 @@ virtual class GaussianFactor {
Matrix information() const;
Matrix augmentedJacobian() const;
pair<Matrix, Vector> jacobian() const;
size_t size() const;
bool empty() const;
};
#include <gtsam/linear/JacobianFactor.h>
@ -301,10 +298,7 @@ virtual class JacobianFactor : gtsam::GaussianFactor {
//Testable
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void printKeys(string s) const;
gtsam::KeyVector& keys() const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
size_t size() const;
Vector unweighted_error(const gtsam::VectorValues& c) const;
Vector error_vector(const gtsam::VectorValues& c) const;
double error(const gtsam::VectorValues& c) const;
@ -346,10 +340,8 @@ virtual class HessianFactor : gtsam::GaussianFactor {
HessianFactor(const gtsam::GaussianFactorGraph& factors);
//Testable
size_t size() const;
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void printKeys(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;

View File

@ -21,6 +21,7 @@
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/inference/VariableSlots.h>
#include <gtsam/inference/VariableIndex.h>
#include <gtsam/base/debug.h>
@ -457,6 +458,64 @@ TEST(GaussianFactorGraph, ProbPrime) {
EXPECT_DOUBLES_EQUAL(expected, gfg.probPrime(values), 1e-12);
}
TEST(GaussianFactorGraph, InconsistentEliminationMessage) {
// Create empty graph
GaussianFactorGraph fg;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
using gtsam::symbol_shorthand::X;
fg.emplace_shared<JacobianFactor>(0, 10 * I_2x2, -1.0 * Vector::Ones(2),
unit2);
fg.emplace_shared<JacobianFactor>(0, -10 * I_2x2, 1, 10 * I_2x2,
Vector2(2.0, -1.0), unit2);
fg.emplace_shared<JacobianFactor>(1, -5 * I_2x2, 2, 5 * I_2x2,
Vector2(-1.0, 1.5), unit2);
fg.emplace_shared<JacobianFactor>(2, -5 * I_2x2, X(3), 5 * I_2x2,
Vector2(-1.0, 1.5), unit2);
Ordering ordering{0, 1};
try {
fg.eliminateSequential(ordering);
} catch (const exception& exc) {
std::string expected_exception_message = "An inference algorithm was called with inconsistent "
"arguments. "
"The\n"
"factor graph, ordering, or variable index were "
"inconsistent with "
"each\n"
"other, or a full elimination routine was called with "
"an ordering "
"that\n"
"does not include all of the variables.\n"
"Leftover keys after elimination: 2, x3.";
EXPECT(expected_exception_message == exc.what());
}
// Test large number of keys
fg = GaussianFactorGraph();
for (size_t i = 0; i < 1000; i++) {
fg.emplace_shared<JacobianFactor>(i, -I_2x2, i + 1, I_2x2,
Vector2(2.0, -1.0), unit2);
}
try {
fg.eliminateSequential(ordering);
} catch (const exception& exc) {
std::string expected_exception_message = "An inference algorithm was called with inconsistent "
"arguments. "
"The\n"
"factor graph, ordering, or variable index were "
"inconsistent with "
"each\n"
"other, or a full elimination routine was called with "
"an ordering "
"that\n"
"does not include all of the variables.\n"
"Leftover keys after elimination: 2, 3, 4, 5, ... (total 999 keys).";
EXPECT(expected_exception_message == exc.what());
}
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -109,13 +109,10 @@ class NonlinearFactorGraph {
};
#include <gtsam/nonlinear/NonlinearFactor.h>
virtual class NonlinearFactor {
virtual class NonlinearFactor : gtsam::Factor {
// Factor base class
size_t size() const;
gtsam::KeyVector keys() const;
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void printKeys(string s) const;
// NonlinearFactor
bool equals(const gtsam::NonlinearFactor& other, double tol) const;
double error(const gtsam::Values& c) const;

View File

@ -894,6 +894,9 @@ template <size_t d>
std::pair<Values, double> ShonanAveraging<d>::run(const Values &initialEstimate,
size_t pMin,
size_t pMax) const {
if (pMin < d) {
throw std::runtime_error("pMin is smaller than the base dimension d");
}
Values Qstar;
Values initialSOp = LiftTo<Rot>(pMin, initialEstimate); // lift to pMin!
for (size_t p = pMin; p <= pMax; p++) {

View File

@ -415,6 +415,20 @@ TEST(ShonanAveraging3, PriorWeights) {
auto result = shonan.run(initial, 3, 3);
EXPECT_DOUBLES_EQUAL(0.0015, shonan.cost(result.first), 1e-4);
}
/* ************************************************************************* */
// Check a small graph created using binary measurements
TEST(ShonanAveraging3, BinaryMeasurements) {
std::vector<BinaryMeasurement<Rot3>> measurements;
auto unit3 = noiseModel::Unit::Create(3);
measurements.emplace_back(0, 1, Rot3::Yaw(M_PI_2), unit3);
measurements.emplace_back(1, 2, Rot3::Yaw(M_PI_2), unit3);
ShonanAveraging3 shonan(measurements);
Values initial = shonan.initializeRandomly();
auto result = shonan.run(initial, 3, 5);
EXPECT_DOUBLES_EQUAL(0.0, shonan.cost(result.first), 1e-4);
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -65,4 +65,6 @@ namespace gtsam {
SymbolicJunctionTree(const SymbolicEliminationTree& eliminationTree);
};
/// typedef for wrapper:
using SymbolicCluster = SymbolicJunctionTree::Cluster;
}

View File

@ -4,7 +4,7 @@
namespace gtsam {
#include <gtsam/symbolic/SymbolicFactor.h>
virtual class SymbolicFactor {
virtual class SymbolicFactor : gtsam::Factor {
// Standard Constructors and Named Constructors
SymbolicFactor(const gtsam::SymbolicFactor& f);
SymbolicFactor();
@ -18,12 +18,10 @@ virtual class SymbolicFactor {
static gtsam::SymbolicFactor FromKeys(const gtsam::KeyVector& js);
// From Factor
size_t size() const;
void print(string s = "SymbolicFactor",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::SymbolicFactor& other, double tol) const;
gtsam::KeyVector keys();
};
#include <gtsam/symbolic/SymbolicFactorGraph.h>
@ -139,7 +137,60 @@ class SymbolicBayesNet {
const gtsam::DotWriter& writer = gtsam::DotWriter()) const;
};
#include <gtsam/symbolic/SymbolicEliminationTree.h>
class SymbolicEliminationTree {
SymbolicEliminationTree(const gtsam::SymbolicFactorGraph& factorGraph,
const gtsam::VariableIndex& structure,
const gtsam::Ordering& order);
SymbolicEliminationTree(const gtsam::SymbolicFactorGraph& factorGraph,
const gtsam::Ordering& order);
void print(
string name = "EliminationTree: ",
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::SymbolicEliminationTree& other,
double tol = 1e-9) const;
};
#include <gtsam/symbolic/SymbolicJunctionTree.h>
class SymbolicCluster {
gtsam::Ordering orderedFrontalKeys;
gtsam::SymbolicFactorGraph factors;
const gtsam::SymbolicCluster& operator[](size_t i) const;
size_t nrChildren() const;
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};
class SymbolicJunctionTree {
SymbolicJunctionTree(const gtsam::SymbolicEliminationTree& eliminationTree);
void print(
string name = "JunctionTree: ",
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
size_t nrRoots() const;
const gtsam::SymbolicCluster& operator[](size_t i) const;
};
#include <gtsam/symbolic/SymbolicBayesTree.h>
class SymbolicBayesTreeClique {
SymbolicBayesTreeClique();
SymbolicBayesTreeClique(const gtsam::SymbolicConditional* conditional);
bool equals(const gtsam::SymbolicBayesTreeClique& other, double tol) const;
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter);
const gtsam::SymbolicConditional* conditional() const;
bool isRoot() const;
gtsam::SymbolicBayesTreeClique* parent() const;
size_t treeSize() const;
size_t numCachedSeparatorMarginals() const;
void deleteCachedShortcuts();
};
class SymbolicBayesTree {
// Constructors
SymbolicBayesTree();
@ -151,9 +202,14 @@ class SymbolicBayesTree {
bool equals(const gtsam::SymbolicBayesTree& other, double tol) const;
// Standard Interface
// size_t findParentClique(const gtsam::IndexVector& parents) const;
size_t size();
void saveGraph(string s) const;
bool empty() const;
size_t size() const;
const gtsam::SymbolicBayesTreeClique* operator[](size_t j) const;
void saveGraph(string s,
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void clear();
void deleteCachedShortcuts();
size_t numCachedSeparatorMarginals() const;
@ -161,28 +217,9 @@ class SymbolicBayesTree {
gtsam::SymbolicConditional* marginalFactor(size_t key) const;
gtsam::SymbolicFactorGraph* joint(size_t key1, size_t key2) const;
gtsam::SymbolicBayesNet* jointBayesNet(size_t key1, size_t key2) const;
};
class SymbolicBayesTreeClique {
SymbolicBayesTreeClique();
// SymbolicBayesTreeClique(gtsam::sharedConditional* conditional);
bool equals(const gtsam::SymbolicBayesTreeClique& other, double tol) const;
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
size_t numCachedSeparatorMarginals() const;
// gtsam::sharedConditional* conditional() const;
bool isRoot() const;
size_t treeSize() const;
gtsam::SymbolicBayesTreeClique* parent() const;
// // TODO: need wrapped versions graphs, BayesNet
// BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function)
// const; FactorGraph<FactorType> marginal(derived_ptr root, Eliminate
// function) const; FactorGraph<FactorType> joint(derived_ptr C2, derived_ptr
// root, Eliminate function) const;
//
void deleteCachedShortcuts();
string dot(const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};
} // namespace gtsam

View File

@ -181,7 +181,7 @@ TEST(QPSolver, iterate) {
QPSolver::State state(currentSolution, VectorValues(), workingSet, false,
100);
int it = 0;
// int it = 0;
while (!state.converged) {
state = solver.iterate(state);
// These checks will fail because the expected solutions obtained from
@ -190,7 +190,7 @@ TEST(QPSolver, iterate) {
// do not recompute dual variables after every step!!!
// CHECK(assert_equal(expected[it], state.values, 1e-10));
// CHECK(assert_equal(expectedDuals[it], state.duals, 1e-10));
it++;
// it++;
}
CHECK(assert_equal(expected[3], state.values, 1e-10));

View File

@ -26,7 +26,13 @@ class TestDecisionTreeFactor(GtsamTestCase):
self.B = (5, 2)
self.factor = DecisionTreeFactor([self.A, self.B], "1 2 3 4 5 6")
def test_from_floats(self):
"""Test whether we can construct a factor from floats."""
actual = DecisionTreeFactor([self.A, self.B], [1., 2., 3., 4., 5., 6.])
self.gtsamAssertEquals(actual, self.factor)
def test_enumerate(self):
"""Test whether we can enumerate the factor."""
actual = self.factor.enumerate()
_, values = zip(*actual)
self.assertEqual(list(values), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0])

View File

@ -13,10 +13,15 @@ Author: Frank Dellaert
import unittest
from gtsam import (DiscreteBayesNet, DiscreteBayesTreeClique,
DiscreteConditional, DiscreteFactorGraph, Ordering)
import numpy as np
from gtsam.symbol_shorthand import A, X
from gtsam.utils.test_case import GtsamTestCase
import gtsam
from gtsam import (DiscreteBayesNet, DiscreteBayesTreeClique,
DiscreteConditional, DiscreteFactorGraph,
DiscreteValues, Ordering)
class TestDiscreteBayesNet(GtsamTestCase):
"""Tests for Discrete Bayes Nets."""
@ -27,7 +32,7 @@ class TestDiscreteBayesNet(GtsamTestCase):
# Define DiscreteKey pairs.
keys = [(j, 2) for j in range(15)]
# Create thin-tree Bayesnet.
# Create thin-tree Bayes net.
bayesNet = DiscreteBayesNet()
bayesNet.add(keys[0], [keys[8], keys[12]], "2/3 1/4 3/2 4/1")
@ -65,15 +70,91 @@ class TestDiscreteBayesNet(GtsamTestCase):
# bayesTree[key].printSignature()
# bayesTree.saveGraph("test_DiscreteBayesTree.dot")
self.assertFalse(bayesTree.empty())
self.assertEqual(12, bayesTree.size())
# The root is P( 8 12 14), we can retrieve it by key:
root = bayesTree[8]
self.assertIsInstance(root, DiscreteBayesTreeClique)
self.assertTrue(root.isRoot())
self.assertIsInstance(root.conditional(), DiscreteConditional)
# Test all methods in DiscreteBayesTree
self.gtsamAssertEquals(bayesTree, bayesTree)
# Check value at 0
zero_values = DiscreteValues()
for j in range(15):
zero_values[j] = 0
value_at_zeros = bayesTree.evaluate(zero_values)
self.assertAlmostEqual(value_at_zeros, 0.0)
# Check value at max
values_star = factorGraph.optimize()
max_value = bayesTree.evaluate(values_star)
self.assertAlmostEqual(max_value, 0.002548)
# Check operator sugar
max_value = bayesTree(values_star)
self.assertAlmostEqual(max_value, 0.002548)
self.assertFalse(bayesTree.empty())
self.assertEqual(12, bayesTree.size())
def test_discrete_bayes_tree_lookup(self):
"""Check that we can have a multi-frontal lookup table."""
# Make a small planning-like graph: 3 states, 2 actions
graph = DiscreteFactorGraph()
x1, x2, x3 = (X(1), 3), (X(2), 3), (X(3), 3)
a1, a2 = (A(1), 2), (A(2), 2)
# Constraint on start and goal
graph.add([x1], np.array([1, 0, 0]))
graph.add([x3], np.array([0, 0, 1]))
# Should I stay or should I go?
# "Reward" (exp(-cost)) for an action is 10, and rewards multiply:
r = 10
table = np.array([
r, 0, 0, 0, r, 0, # x1 = 0
0, r, 0, 0, 0, r, # x1 = 1
0, 0, r, 0, 0, r # x1 = 2
])
graph.add([x1, a1, x2], table)
graph.add([x2, a2, x3], table)
# Eliminate for MPE (maximum probable explanation).
ordering = Ordering(keys=[A(2), X(3), X(1), A(1), X(2)])
lookup = graph.eliminateMultifrontal(ordering, gtsam.EliminateForMPE)
# Check that the lookup table is correct
assert lookup.size() == 2
lookup_x1_a1_x2 = lookup[X(1)].conditional()
assert lookup_x1_a1_x2.nrFrontals() == 3
# Check that sum is 1.0 (not 100, as we now normalize to prevent underflow)
empty = gtsam.DiscreteValues()
self.assertAlmostEqual(lookup_x1_a1_x2.sum(3)(empty), 1.0)
# And that only non-zero reward is for x1 a1 x2 == 0 1 1
values = DiscreteValues()
values[X(1)] = 0
values[A(1)] = 1
values[X(2)] = 1
self.assertAlmostEqual(lookup_x1_a1_x2(values), 1.0)
lookup_a2_x3 = lookup[X(3)].conditional()
# Check that the sum depends on x2 and is non-zero only for x2 in {1, 2}
sum_x2 = lookup_a2_x3.sum(2)
values = DiscreteValues()
values[X(2)] = 0
self.assertAlmostEqual(sum_x2(values), 0)
values[X(2)] = 1
self.assertAlmostEqual(sum_x2(values), 1.0) # not 10, as we normalize
values[X(2)] = 2
self.assertAlmostEqual(sum_x2(values), 2.0) # not 20, as we normalize
assert lookup_a2_x3.nrFrontals() == 2
# And that the non-zero rewards are for x2 a2 x3 == 1 1 2
values = DiscreteValues()
values[X(2)] = 1
values[A(2)] = 1
values[X(3)] = 2
self.assertAlmostEqual(lookup_a2_x3(values), 1.0) # not 10...
if __name__ == "__main__":
unittest.main()

View File

@ -10,14 +10,16 @@ Author: Frank Dellaert
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
import math
import unittest
import numpy as np
from gtsam.utils.test_case import GtsamTestCase
import gtsam
from gtsam import (BetweenFactorPose2, LevenbergMarquardtParams, Pose2, Rot2,
ShonanAveraging2, ShonanAveraging3,
from gtsam import (BetweenFactorPose2, BetweenFactorPose3,
BinaryMeasurementRot3, LevenbergMarquardtParams, Pose2,
Pose3, Rot2, Rot3, ShonanAveraging2, ShonanAveraging3,
ShonanAveragingParameters2, ShonanAveragingParameters3)
DEFAULT_PARAMS = ShonanAveragingParameters3(
@ -197,6 +199,19 @@ class TestShonanAveraging(GtsamTestCase):
expected_thetas_deg = np.array([0.0, 90.0, 0.0])
np.testing.assert_allclose(thetas_deg, expected_thetas_deg, atol=0.1)
def test_measurements3(self):
"""Create from Measurements."""
measurements = []
unit3 = gtsam.noiseModel.Unit.Create(3)
m01 = BinaryMeasurementRot3(0, 1, Rot3.Yaw(math.radians(90)), unit3)
m12 = BinaryMeasurementRot3(1, 2, Rot3.Yaw(math.radians(90)), unit3)
measurements.append(m01)
measurements.append(m12)
obj = ShonanAveraging3(measurements)
self.assertIsInstance(obj, ShonanAveraging3)
initial = obj.initializeRandomly()
_, cost = obj.run(initial, min_p=3, max_p=5)
self.assertAlmostEqual(cost, 0)
if __name__ == "__main__":
unittest.main()

View File

@ -84,7 +84,7 @@ class TestVisualISAMExample(GtsamTestCase):
values.insert(key, v)
self.assertAlmostEqual(isam.error(values), 34212421.14731998)
self.assertAlmostEqual(isam.error(values), 34212421.14732)
def test_isam2_update(self):
"""