gtsam/gtsam/discrete/AlgebraicDecisionTree.h

235 lines
7.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file AlgebraicDecisionTree.h
* @brief Algebraic Decision Trees
* @author Frank Dellaert
* @date Mar 14, 2011
*/
#pragma once
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DecisionTree-inl.h>
#include <algorithm>
#include <map>
#include <string>
#include <iomanip>
#include <vector>
namespace gtsam {
/**
* An algebraic decision tree fixes the range of a DecisionTree to double.
* Just has some nice constructors and some syntactic sugar.
* TODO(dellaert): consider eliminating this class altogether?
*
* @ingroup discrete
*/
template <typename L>
class GTSAM_EXPORT AlgebraicDecisionTree : public DecisionTree<L, double> {
/**
* @brief Default method used by `labelFormatter` or `valueFormatter` when
* printing.
*
* @param x The value passed to format.
* @return std::string
*/
static std::string DefaultFormatter(const L& x) {
std::stringstream ss;
ss << x;
return ss.str();
}
public:
using Base = DecisionTree<L, double>;
/** The Real ring with addition and multiplication */
struct Ring {
static inline double zero() { return 0.0; }
static inline double one() { return 1.0; }
static inline double add(const double& a, const double& b) {
return a + b;
}
static inline double max(const double& a, const double& b) {
return std::max(a, b);
}
static inline double mul(const double& a, const double& b) {
return a * b;
}
static inline double div(const double& a, const double& b) {
return a / b;
}
static inline double id(const double& x) { return x; }
};
AlgebraicDecisionTree(double leaf = 1.0) : Base(leaf) {}
// Explicitly non-explicit constructor
AlgebraicDecisionTree(const Base& add) : Base(add) {}
/** Create a new leaf function splitting on a variable */
AlgebraicDecisionTree(const L& label, double y1, double y2)
: Base(label, y1, y2) {}
/**
* @brief Create a new leaf function splitting on a variable
*
* @param labelC: The label with cardinality 2
* @param y1: The value for the first key
* @param y2: The value for the second key
*
* Example:
* @code{.cpp}
* std::pair<string, size_t> A {"a", 2};
* AlgebraicDecisionTree<string> a(A, 0.6, 0.4);
* @endcode
*/
AlgebraicDecisionTree(const typename Base::LabelC& labelC, double y1,
double y2)
: Base(labelC, y1, y2) {}
/**
* @brief Create from keys with cardinalities and a vector table
*
* @param labelCs: The keys, with cardinalities, given as pairs
* @param ys: The vector table
*
* Example with three keys, A, B, and C, with cardinalities 2, 3, and 2,
* respectively, and a vector table of size 12:
* @code{.cpp}
* DiscreteKey A(0, 2), B(1, 3), C(2, 2);
* const vector<double> cpt{
* 1.0 / 3, 2.0 / 3, 3.0 / 7, 4.0 / 7, 5.0 / 11, 6.0 / 11, //
* 1.0 / 9, 8.0 / 9, 3.0 / 6, 3.0 / 6, 5.0 / 10, 5.0 / 10};
* AlgebraicDecisionTree<Key> expected(A & B & C, cpt);
* @endcode
* The table is given in the following order:
* A=0, B=0, C=0
* A=0, B=0, C=1
* ...
* A=1, B=1, C=1
* Hence, the first line in the table is for A==0, and the second for A==1.
* In each line, the first two entries are for B==0, the next two for B==1,
* and the last two for B==2. Each pair is for a C value of 0 and 1.
*/
AlgebraicDecisionTree //
(const std::vector<typename Base::LabelC>& labelCs,
const std::vector<double>& ys) {
this->root_ =
Base::create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/**
* @brief Create from keys and string table
*
* @param labelCs: The keys, with cardinalities, given as pairs
* @param table: The string table, given as a string of doubles.
*
* @note Table needs to be in same order as the vector table in the other constructor.
*/
AlgebraicDecisionTree //
(const std::vector<typename Base::LabelC>& labelCs,
const std::string& table) {
// Convert string to doubles
std::vector<double> ys;
std::istringstream iss(table);
std::copy(std::istream_iterator<double>(iss),
std::istream_iterator<double>(), std::back_inserter(ys));
// now call recursive Create
this->root_ =
Base::create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/**
* @brief Create a range of decision trees, splitting on a single variable.
*
* @param begin: Iterator to beginning of a range of decision trees
* @param end: Iterator to end of a range of decision trees
* @param label: The label to split on
*/
template <typename Iterator>
AlgebraicDecisionTree(Iterator begin, Iterator end, const L& label)
: Base(nullptr) {
this->root_ = compose(begin, end, label);
}
/**
* Convert labels from type M to type L.
*
* @param other: The AlgebraicDecisionTree with label type M to convert.
* @param map: Map from label type M to label type L.
*/
template <typename M>
AlgebraicDecisionTree(const AlgebraicDecisionTree<M>& other,
const std::map<M, L>& map) {
// Functor for label conversion so we can use `convertFrom`.
std::function<L(const M&)> L_of_M = [&map](const M& label) -> L {
return map.at(label);
};
std::function<double(const double&)> op = Ring::id;
this->root_ = DecisionTree<L, double>::convertFrom(other.root_, L_of_M, op);
}
/** sum */
AlgebraicDecisionTree operator+(const AlgebraicDecisionTree& g) const {
return this->apply(g, &Ring::add);
}
/** product */
AlgebraicDecisionTree operator*(const AlgebraicDecisionTree& g) const {
return this->apply(g, &Ring::mul);
}
/** division */
AlgebraicDecisionTree operator/(const AlgebraicDecisionTree& g) const {
return this->apply(g, &Ring::div);
}
/** sum out variable */
AlgebraicDecisionTree sum(const L& label, size_t cardinality) const {
return this->combine(label, cardinality, &Ring::add);
}
/** sum out variable */
AlgebraicDecisionTree sum(const typename Base::LabelC& labelC) const {
return this->combine(labelC, &Ring::add);
}
/// print method customized to value type `double`.
void print(const std::string& s = "",
const typename Base::LabelFormatter& labelFormatter =
&DefaultFormatter) const {
auto valueFormatter = [](const double& v) {
std::stringstream ss;
ss << std::setw(4) << std::setprecision(8) << v;
return ss.str();
};
Base::print(s, labelFormatter, valueFormatter);
}
/// Equality method customized to value type `double`.
bool equals(const AlgebraicDecisionTree& other, double tol = 1e-9) const {
// lambda for comparison of two doubles upto some tolerance.
auto compare = [tol](double a, double b) {
return std::abs(a - b) < tol;
};
return Base::equals(other, compare);
}
};
template <typename T>
struct traits<AlgebraicDecisionTree<T>>
: public Testable<AlgebraicDecisionTree<T>> {};
} // namespace gtsam